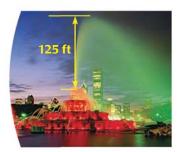
- **39.** At Buckingham Fountain in Chicago, the water's height h (in feet) above the main nozzle can be modeled by $h = -16t^2 + 89.6t$ where t is the time (in seconds) since the water has left the nozzle.
- **40.** When you walk x meters per minute, your rate y of energy use (in calories per minute) can be modeled by $y = 0.0085x^2 - 1.5x + 120$.



Buckingham Fountain

WRITING IN VERTEX FORM Write the quadratic function in vertex form. Then identify the vertex.

41.
$$y = x^2 - 8x + 19$$

42.
$$v = x^2 - 4x - 1$$

43.
$$v = x^2 + 12x + 37$$

44.
$$y = x^2 + 20x + 90$$

41.
$$y = x^2 - 8x + 19$$
 42. $y = x^2 - 4x - 1$ **43.** $y = x^2 + 12x + 37$ **44.** $y = x^2 + 20x + 90$ **45.** $f(x) = x^2 - 3x + 4$ **46.** $g(x) = x^2 + 7x + 2$ **47.** $y = 2x^2 + 24x + 25$ **48.** $y = 5x^2 + 10x + 7$ **49.** $y = 2x^2 - 28x + 95$

46.
$$g(x) = x^2 + 7x + 3$$

47
$$v = 2r^2 + 24r + 25$$

48.
$$v = 5x^2 + 10x + 7$$

49.
$$y = 2x^2 - 28x + 99$$

ERROR ANALYSIS Describe and correct the error in solving the equation.

50.

EXAMPLES

for Exs. 41-49

6 and 7 on p. 287

$$x^{2} + 10x + 13 = 0$$

$$x^{2} + 10x = -13$$

$$x^{2} + 10x + 25 = -13 + 25$$

$$(x + 5)^{2} = 12$$

$$x + 5 = \pm\sqrt{12}$$

$$x = -5 \pm\sqrt{12}$$

$$x = -5 \pm 4\sqrt{3}$$

$$4x^{2} + 24x - 11 = 0$$

$$4(x^{2} + 6x) = 11$$

$$4(x^{2} + 6x + 9) = 11 + 9$$

$$4(x + 3)^{2} = 20$$

$$(x + 3)^{2} = 5$$

$$x + 3 = \pm\sqrt{5}$$

$$x = -3 \pm\sqrt{5}$$

COMPLETING THE SQUARE Solve the equation by completing the square.

52.
$$x^2 + 9x + 20 = 0$$

53.
$$x^2 + 3x + 14 = 0$$

52.
$$x^2 + 9x + 20 = 0$$
 53. $x^2 + 3x + 14 = 0$ **54.** $7q^2 + 10q = 2q^2 + 155$

55
$$3x^2 + x = 2x - 6$$

55.
$$3x^2 + x = 2x - 6$$
 56. $0.1x^2 - x + 9 = 0.2x$ **57.** $0.4v^2 + 0.7v = 0.3v - 2$

57.
$$0.4v^2 + 0.7v = 0.3v - 2$$

- **58. TAKS REASONING** Write a quadratic equation with real-number solutions that can be solved by completing the square but not by factoring.
- 59. TAKS REASONING In this exercise, you will investigate the graphical effect of completing the square.
 - a. Graph each pair of functions in the same coordinate plane.

$$y = x^2 + 2x$$

$$y = x^{2} + 2x$$
 $y = x^{2} + 4x$ $y = x^{2} - 6x$
 $y = (x + 1)^{2}$ $y = (x + 2)^{2}$ $y = (x - 3)^{2}$

$$v = x^2 - 6x$$

$$v = (r + 1)^2$$

$$v = (r + 2)^2$$

$$v = (r - 3)^2$$

- **b.** Compare the graphs of $y = x^2 + bx$ and $y = \left(x + \frac{b}{2}\right)^2$. What happens to the graph of $y = x^2 + bx$ when you complete the square?
- **60. REASONING** For what value(s) of k does $x^2 + bx + \left(\frac{b}{2}\right)^2 = k$ have exactly 1 real solution? 2 real solutions? 2 imaginary solutions?
- **61. CHALLENGE** Solve $x^2 + bx + c = 0$ by completing the square. Your answer will be an expression for x in terms of b and c.