EXAMPLE 4 Solve $ax^2 + bx + c = 0$ when $a \neq 1$

Solve $2x^2 + 8x + 14 = 0$ by completing the square.

 $2x^2 + 8x + 14 = 0$ Write original equation. $x^2 + 4x + 7 = 0$ Divide each side by the coefficient of x^2 . $x^2 + 4x = -7$ Write left side in the form $x^2 + bx$. Add $\left(\frac{4}{2}\right)^2 = 2^2 = 4$ to each side. $x^2 + 4x + 4 = -7 + 4$ $(x+2)^2 = -3$ Write left side as a binomial squared. $x + 2 = \pm \sqrt{-3}$ Take square roots of each side. $x = -2 \pm \sqrt{-3}$ Solve for x. $x = -2 \pm i\sqrt{3}$ Write in terms of the imaginary unit *i*.

The solutions are $-2 + i\sqrt{3}$ and $-2 - i\sqrt{3}$.

TAKS PRACTICE: Multiple Choice EXAMPLE 5

Solution

Use the formula for the area of a rectangle to write an equation.

7x(x+6) = 112	$Length \times Width = Area$
$7x^2 + 42x = 112$	Distributive property
$x^2 + 6x = 16$	Divide each side by the coefficient of x^2 .
$x^2 + 6x + 9 = 16 + 9$	Add $\left(\frac{6}{2}\right)^2 = 3^2 = 9$ to each side.
$(x+3)^2 = 25$	Write left side as a binomial squared.
$x + 3 = \pm 5$	Take square roots of each side.
$x = -3 \pm 5$	Solve for <i>x</i> .

So, x = -3 + 5 = 2 or x = -3 - 5 = -8. You can reject x = -8 because the side lengths would be -56 and -2, and side lengths cannot be negative.

The value of x is 2. The correct answer is B. (A) (B) (C) (D)

GUIDED PRACTICE for Examples 3, 4, and 5

Solve the equation by completing the square.

7. $x^2 + 6x + 4 = 0$	8. $x^2 - 10x + 8 = 0$	9. $2n^2 - 4n - 14 = 0$
10. $3x^2 + 12x - 18 = 0$	11. $6x(x+8) = 12$	12. $4p(p-2) = 100$

when x = -8.

You can eliminate

choices A and D

because the side lengths are negative