EXAMPLE 2 Make a perfect square trinomial

Find the value of c that makes $x^{2}+16 x+c$ a perfect square trinomial. Then write the expression as the square of a binomial.

Solution

STEP 1

STEP 2 Square the result of Step 1.
$\frac{16}{2}=8$
$8^{2}=64$
STEP 3 Replace c with the result of Step $2 . \quad x^{2}+16 x+64$

- The trinomial $x^{2}+16 x+c$ is a perfect square when $c=64$.

Then $x^{2}+16 x+64=(x+8)(x+8)=(x+8)^{2}$.

Guided Practice

for Examples 1 and 2
Solve the equation by finding square roots.

1. $x^{2}+6 x+9=36$
2. $x^{2}-10 x+25=1$
3. $x^{2}-24 x+144=100$

Find the value of \boldsymbol{c} that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.
4. $x^{2}+14 x+c$
5. $x^{2}+22 x+c$
6. $x^{2}-9 x+c$

SOLVING EQUATIONS The method of completing the square can be used to solve any quadratic equation. When you complete a square as part of solving an equation, you must add the same number to both sides of the equation.

ExAMPLE 3 Solve $a x^{2}+b x+c=0$ when $a=1$

Solve $x^{2}-12 x+4=0$ by completing the square.

$$
\begin{aligned}
& \text { REVIEW RADICALS } \\
& \text { For hel.. }
\end{aligned}
$$

$$
\begin{array}{rlrl}
x^{2}-12 x+4 & =0 & & \text { Write original equation. } \\
x^{2}-12 x & =-4 & & \text { Write left side in the form } x^{2}+b x . \\
x^{2}-12 x+36 & =-4+36 & & \text { Add }\left(\frac{-12}{2}\right)^{2}=(-6)^{2}=36 \text { to each side. } \\
(x-6)^{2} & =32 & & \text { Write left side as a binomial squared. } \\
x-6 & = \pm \sqrt{32} & & \text { Take square roots of each side. } \\
x & =6 \pm \sqrt{32} & & \text { Solve for } x . \\
x & x & =6 \pm 4 \sqrt{2} & \\
\text { Simplify: } \sqrt{\mathbf{3 2}}=\sqrt{16} \cdot \sqrt{\mathbf{2}}=4 \sqrt{\mathbf{2}} \\
& \text { The solutions } & \text { are } 6+4 \sqrt{2} \text { and } 6-4 \sqrt{2} .
\end{array}
$$

CHECK You can use algebra or a graph.
Algebra Substitute each solution in the original equation to verify that it is correct.

Graph Use a graphing calculator to graph $y=x^{2}-12 x+4$. The x-intercepts are about $0.34 \approx 6-4 \sqrt{2}$ and $11.66 \approx 6+4 \sqrt{2}$.

