EXAMPLE 2 Make a perfect square trinomial

Find the value of c that makes $x^2 + 16x + c$ a perfect square trinomial. Then write the expression as the square of a binomial.

Solution

STEP 1	Find half the coefficient of <i>x</i> .	$\frac{16}{10} = 8$	_	<u>x</u>	8
		2			
STEP 2	Square the result of Step 1.	$8^2 = 64$	x	<i>x</i> ²	8 <i>x</i>
STEP 3	Replace <i>c</i> with the result of Step 2.	$x^2 + 16x + 64$			
The trinomial $x^2 + 16x + c$ is a perfect square when $c = 64$.				8 <i>x</i>	64
Then $x^2 + 16x + 64 = (x + 8)(x + 8) = (x + 8)^2$.					

i roots, see p.

GUIDED PRACTICE for Examples 1 and 2

Solve the equation by finding square roots.

1.
$$x^2 + 6x + 9 = 36$$
 2. $x^2 - 10x + 25 = 1$ **3.** $x^2 - 24x + 144 = 100$

Find the value of *c* that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

5. $x^2 + 22x + c$ 6. $x^2 - 9x + c$ 4. $x^2 + 14x + c$

SOLVING EQUATIONS The method of completing the square can be used to solve *any* quadratic equation. When you complete a square as part of solving an equation, you must add the same number to *both* sides of the equation.

Solve $ax^2 + bx + c = 0$ when a = 1EXAMPLE 3

	Solve $x^2 - 12x + 4 = 0$ by completing the square.			
	$x^2 - 12x + 4 = 0$	Write original equation.		
	$x^2 - 12x = -4$	Write left side in the form $x^2 + bx$.		
	$x^2 - 12x + 36 = -4 + 36$	Add $\left(\frac{-12}{2}\right)^2 = (-6)^2 = 36$ to each side.		
	$(x-6)^2 = 32$	Write left side as a binomial squared.		
	$x - 6 = \pm \sqrt{32}$	Take square roots of each side.		
	$x = 6 \pm \sqrt{32}$	Solve for <i>x</i> .		
REVIEW RADICALS	$x = 6 \pm 4\sqrt{2}$	Simplify: $\sqrt{32} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$		
simplifying square	The solutions are $6 + 4\sqrt{2}$ and $6 - 4\sqrt{2}$.			
roots, see p. 266.	CHECK You can use algebra or a graph.			
	Algebra Substitute each solut equation to verify that it is con	ion in the original rrect.		

Graph Use a graphing calculator to graph $y = x^2 - 12x + 4$. The x-intercepts are about $0.34 \approx 6 - 4\sqrt{2}$ and $11.66 \approx 6 + 4\sqrt{2}$.

