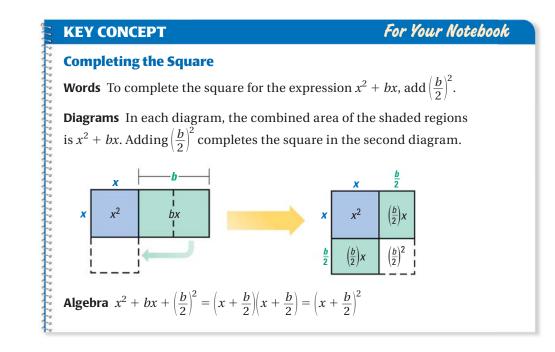
_	4.7 2A.2.B, 2A.5.E, 2A.8.A, 2A.8.D	Complete the Square	
1	Before	You solved quadratic equations by finding square roots.	
	Now	You will solve quadratic equations by completing the square.	all million
	Why?	So you can find a baseball's maximum height, as in Example 7.	1112

Key Vocabulary • completing the square

ANOTHER WAY You can also find the solutions by writing the given equation as $x^2 - 8x - 9 = 0$ and solving this equation

by factoring.

In Lesson 4.5, you solved equations of the form $x^2 = k$ by finding square roots. This method also works if one side of an equation is a perfect square trinomial.


EXAMPLE 1 Solve a quadratic equation by finding square roots

Solve $x^2 - 8x + 16 = 25$.

$x^2 - 8x + 16 = 25$	Write original equation.
$(x-4)^2 = 25$	Write left side as a binomial squared.
$x-4=\pm 5$	Take square roots of each side.
$x = 4 \pm 5$	Solve for <i>x</i> .

The solutions are 4 + 5 = 9 and 4 - 5 = -1.

PERFECT SQUARES In Example 1, the trinomial $x^2 - 8x + 16$ is a perfect square because it equals $(x - 4)^2$. Sometimes you need to add a term to an expression $x^2 + bx$ to make it a square. This process is called **completing the square**.

