Investigating ACTIVITY Use before Lesson 4.7

4.7 Using Algebra Tiles to Complete the Square Les a.5, 2A.2.A, 2A.5.E

MATERIALS • algebra tiles

How can you use algebra tiles to complete the square for a quadratic expression?

If you are given an expression of the form $x^2 + bx$, you can add a constant *c* to the expression so that the result $x^2 + bx + c$ is a perfect square trinomial. This process is called *completing the square*.

EXPLORE

QUESTION

Complete the square for the expression $x^2 + 6x$

Model the expression

Use algebra tiles to model the expression $x^2 + 6x$. You will need to use one x^2 -tile and six *x*-tiles for this expression.

Make a square

Arrange the tiles in a square. You want the length and width of the square to be equal. Your arrangement will be incomplete in one of the corners.

Complete the square

Find the number of 1-tiles needed to complete the square. By adding nine 1-tiles, you can see that $x^2 + 6x + 9$ is equal to $(x + 3)^2$.

DRAW CONCLUSIONS Use your observations to complete these exercises

- **1.** Copy and complete the table at the right by following the steps above.
- 2. Look for patterns in the last column of your table. Consider the general statement $x^2 + bx + c = (x + d)^2$.
 - **a.** How is *d* related to *b* in each case?
 - **b.** How is *c* related to *d* in each case?
 - **c.** How can you obtain the numbers in the table's second column directly from the coefficients of *x* in the expressions from the first column?

Completing the Square		
Expression	Number of 1-tiles needed to complete the square	Expression written as a square
$x^2 + 2x + 2$?	?
$x^2 + 4x + 2$?	?
$x^2 + 6x + \underline{?}$	9	$x^2 + 6x + 9$ = $(x + 3)^2$
$x^2 + 8x + 2$?	?
$x^2 + 10x + 2$?	?