- 74. **TAKS REASONING** Evaluate $\sqrt{-4} \cdot \sqrt{-25}$ and $\sqrt{100}$. Does the rule $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ on page 266 hold when *a* and *b* are negative numbers?
- **75. PARALLEL CIRCUITS** In a *parallel circuit*, there is more than one pathway through which current can flow. To find the impedance Z of a parallel circuit with two pathways, first calculate the impedances Z_1 and Z_2 of the pathways separately by treating each pathway as a series circuit. Then apply this formula:

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

What is the impedance of each parallel circuit shown below?

76. CHALLENGE *Julia sets*, like the Mandelbrot set shown on page 281, are fractals defined on the complex plane. For every complex number *c*, there is an associated Julia set determined by the function $f(z) = z^2 + c$.

For example, the Julia set corresponding to c = 1 + i is determined by the function $f(z) = z^2 + 1 + i$. A number z_0 is a member of this Julia set if the absolute values of the numbers $z_1 = f(z_0)$, $z_2 = f(z_1)$, $z_3 = f(z_2)$, . . . are all less than some fixed number *N*, and z_0 is not a member if these absolute values grow infinitely large.

A Julia set

TAKS PRACTICE at classzone.com

Tell whether the given number z_0 belongs to the Julia set associated with the function $f(z) = z^2 + 1 + i$.

a. $z_0 = i$ **b.** $z_0 = 1$ **c.** $z_0 = 2i$ **d.** $z_0 = 2 + 3i$

MIXED REVIEW FOR TAKS

- 77. **TAKS PRACTICE** There are 185 students in this year's freshman class. What additional information is needed to predict the number of students in next year's freshman class? *TAKS Obj.* 10
 - (A) The rate of change in the number of students in the freshman class
 - (B) The number of females in this year's freshman class
 - **(C)** The number of students in this year's senior class
 - **D** The maximum number of students in the school
- **78. TAKS PRACTICE** What are the slope *m* and *y*-intercept *b* of the line that contains the point (-4, 1) and has the same *y*-intercept as 3x 2y = 10? *TAKS Obj.* **3**

(F)
$$m = -\frac{3}{2}, b = -5$$

(G) $m = 1, b = 5$
(I) $m = \frac{3}{2}, b = 7$
(J) $m = \frac{9}{4}, b = 10$

ONLINE QUIZ at classzone.com

282

REVIEW

REVIEW

Lesson 2.4; TAKS Workbook

Skills Review

Handbook p. 998; TAKS Workbook