REWRITING EQUATIONS The approach you use to solve a formula for a variable can be applied to other algebraic equations.

EXAMPLE 3 Rewrite a linear equation

Solve $9 x-4 y=7$ for y. Then find the value of y when $x=-5$.

Solution

STEP 1 Solve the equation for y.

$$
\begin{aligned}
9 x-4 y & =7 & & \text { Write original equation. } \\
-4 y & =7-9 x & & \text { Subtract } 9 x \text { from each side. } \\
y & =-\frac{7}{4}+\frac{9}{4} x & & \text { Divide each side by }-4 .
\end{aligned}
$$

STEP 2 Substitute the given value into the rewritten equation.
by the same number, remember to divide every term by the number.

$$
y=-\frac{7}{4}+\frac{9}{4}(-5) \quad \text { Substitute }-5 \text { for } x \text {. }
$$

$$
y=-\frac{7}{4}-\frac{45}{4} \quad \text { Multiply. }
$$

$$
y=-13 \quad \text { Simplify. }
$$

CHECK

$$
\begin{aligned}
9 x-4 y & =7 & & \text { Write original equation. } \\
9(-5)-4(-13) & \stackrel{?}{=} 7 & & \text { Substitute }-5 \text { for } x \text { and }-13 \text { for } y . \\
7 & =7 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

EXAMPLE 4 Rewrite a nonlinear equation

Solve $2 y+x y=6$ for y. Then find the value of y when $x=-3$.

Solution

STEP 1 Solve the equation for y.

$$
\begin{aligned}
2 y+x y & =6 & & \text { Write original equation. } \\
(2+x) y & =6 & & \text { Distributive property } \\
y & =\frac{6}{2+x} & & \text { Divide each side by }(\mathbf{2}+\boldsymbol{x}) .
\end{aligned}
$$

STEP 2 Substitute the given value into the rewritten equation.

$$
\begin{array}{ll}
y=\frac{6}{2+(-3)} & \text { Substitute }-3 \text { for } x . \\
y=-6 & \\
\text { Simplify. }
\end{array}
$$

Guided Practice for Examples 3 and 4

Solve the equation for \boldsymbol{y}. Then find the value of \boldsymbol{y} when $\boldsymbol{x}=\mathbf{2}$.
8. $y-6 x=7$
9. $5 y-x=13$
10. $3 x+2 y=12$
11. $2 x+5 y=-1$
12. $3=2 x y-x$
13. $4 y-x y=28$

