COMPLEX CONJUGATES Two complex numbers of the form $a+b i$ and $a-b i$ are called complex conjugates. The product of complex conjugates is always a real number. For example, $(2+4 i)(2-4 i)=4-8 i+8 i+16=20$. You can use this fact to write the quotient of two complex numbers in standard form.

EXAMPLE 5 Divide complex numbers

REWRITE QUOTIENTS When a quotient has an imaginary number in the denominator, rewrite the denominator as a real number so you can express the quotient in standard form.

Write the quotient $\frac{7+5 i}{1-4 i}$ in standard form.

$$
\begin{aligned}
\frac{7+5 i}{1-4 i} & =\frac{7+5 i}{1-4 i} \cdot \frac{1+4 i}{1+4 i} & & \begin{array}{l}
\text { Multiply numerator and denominator by } \\
1+4 i, \text { the complex conjugate of } 1-4 i .
\end{array} \\
& =\frac{7+28 i+5 i+20 i^{2}}{1+4 i-4 i-16 i^{2}} & & \text { Multiply using FOIL. } \\
& =\frac{7+33 i+20(-1)}{1-16(-1)} & & \text { Simplify and use } i^{2}=1 . \\
& =\frac{-13+33 i}{17} & & \text { Simplify. } \\
& =-\frac{13}{17}+\frac{33}{17} i & & \text { Write in standard form. }
\end{aligned}
$$

Guided Practice for Examples 3, 4, and 5

10. WHAT IF? In Example 3, what is the impedance of the circuit if the given capacitor is replaced with one having a reactance of 7 ohms ?

Write the expression as a complex number in standard form.
11. $i(9-i)$
12. $(3+i)(5-i)$
13. $\frac{5}{1+i}$
14. $\frac{5+2 i}{3-2 i}$

COMPLEX PLANE Just as every real number corresponds to a point on the real number line, every complex number corresponds to a point in the complex plane. As shown in the next example, the complex plane has a horizontal axis called the real axis and a vertical axis called the imaginary axis.

EXAMPLE 6 Plot complex numbers

Plot the complex numbers in the same complex plane.

a. $3-2 i$
b. $-2+4 i$
c. $3 i$
d. $-4-3 i$

Solution

a. To plot $3-2 i$, start at the origin, move 3 units to the right, and then move 2 units down.
b. To plot $-2+4 i$, start at the origin, move 2 units to the left, and then move 4 units up.
c. To plot $3 i$, start at the origin and move 3 units up.
d. To plot $-4-3 i$, start at the origin, move 4 units to the left, and then move 3 units down.

