COMPLEX NUMBERS A complex number written in standard form is a number $a+b i$ where a and b are real numbers. The number a is the real part of the complex number, and the number $b i$ is the imaginary part.
If $b \neq 0$, then $a+b i$ is an imaginary number. If $a=0$ and $b \neq 0$, then $a+b i$ is a pure imaginary number. The diagram shows how different types of complex numbers are related.

Two complex numbers $a+b i$ and $c+d i$ are equal if and only if $a=c$ and $b=d$. For example, if $x+y i=5-3 i$, then $x=5$ and $y=-3$.

Complex Numbers (a+bi)

Real Numbers $(a+0 i)$	Imaginary Numbers $(a+b i, b \neq 0)$ $2+3 i$ -1$\quad \frac{5}{2}$
π	$\sqrt{2}$
Pure Imaginary Numbers $0+b i, b \neq 0)$ $-4 i$	

KEY CONCEPT

For Your Notebook

Sums and Differences of Complex Numbers

To add (or subtract) two complex numbers, add (or subtract) their real parts and their imaginary parts separately.

Sum of complex numbers:
$(a+b i)+(c+d i)=(a+c)+(b+d) i$
Difference of complex numbers: $\quad(a+b i)-(c+d i)=(a-c)+(b-d) i$

EXAMPLE 2 Add and subtract complex numbers

Write the expression as a complex number in standard form.
a. $(8-i)+(5+4 i)$
b. $(7-6 i)-(3-6 i)$
c. $10-(6+7 i)+4 i$

Solution

a. $(8-i)+(5+4 i)=(8+5)+(-1+4) i \quad$ Definition of complex addition

$$
=13+3 i \quad \text { Write in standard form. }
$$

b. $(7-6 i)-(3-6 i)=(7-3)+(-6+6) i$

$$
\begin{aligned}
& =4+0 i \\
& =4
\end{aligned}
$$

c. $10-(6+7 i)+4 i=[(10-6)-7 i]+4 i$

$$
\begin{aligned}
& =(4-7 i)+4 i \\
& =4+(-7+4) i \\
& =4-3 i
\end{aligned}
$$

Definition of complex subtraction Simplify.

Write in standard form.

Definition of complex subtraction
Simplify.
Definition of complex addition
Write in standard form.

GUIDED PrACTICE for Example 2

Write the expression as a complex number in standard form.
7. $(9-i)+(-6+7 i)$
8. $(3+7 i)-(8-2 i)$
9. $-4-(1+i)-(5+9 i)$

