METHOD 2 Using a Graph Another approach is to write a quadratic equation and then use a graph to solve the equation. You can use a graphing calculator to make the graph.

STEP 1 Write an equation that models the situation using the height function $h=-16 t^{2}+h_{0}$.

$$
\begin{array}{ll}
h=-16 t^{2}+h_{0} & \text { Write height function. } \\
0=-16 t^{2}+50 & \text { Substitute } \mathbf{0} \text { for } \boldsymbol{h} \text { and } 50 \text { for } \boldsymbol{h}_{0} .
\end{array}
$$

STEP 2 Enter the function $y=-16 x^{2}+50$ into
a graphing calculator. Note that time is now represented by x and height is now represented by y.

Y1日-16X2+50 $\mathrm{Y}_{2}=$
$Y_{3}=$
Y4 $=$
$Y_{5}=$
Y6=
$Y_{7}=$

STEP 3 Graph the height function. Adjust the viewing window so that you can see the point where the graph crosses the positive x-axis. Find the positive x-value for which $y=0$ using the zero feature. The graph shows that $y=0$ when $x \approx 1.8$.

- The container hits the ground about 1.8 seconds after it is dropped.

PRACTICE

SOLVING EQUATIONS Solve the quadratic equation using a table and using a graph.

1. $2 x^{2}-12 x+10=0$
2. $x^{2}+7 x+12=0$
3. $9 x^{2}-30 x+25=0$
4. $7 x^{2}-3=0$
5. $x^{2}+3 x-6=0$
6. WHAT IF? How long does it take for an egg container to hit the ground when dropped from a height of 100 feet? Find the answer using a table and using a graph.
7. WIND PRESSURE The pressure P (in pounds per square foot) from wind blowing at s miles per hour is given by $P=0.00256 s^{2}$. What wind speed produces a pressure of $30 \mathrm{lb} / \mathrm{ft}^{2}$? Solve this problem using a table and using a graph.
8. BIRDS A bird flying at a height of 30 feet carries a shellfish. The bird drops the shellfish to break it and get the food inside. How long does it take for the shellfish to hit the ground? Find the answer using a table and using a graph.
9. DROPPED OBJECT You are dropping a ball from a window 29 feet above the ground to your friend who will catch it 4 feet above the ground. How long is the ball in the air before your friend catches it? Solve this problem using a table and using a graph.
10. REASONING Explain how to use the table feature of a graphing calculator to approximate the solution of the problem on page 272 to the nearest hundredth of a second. Use this procedure to find the approximate solution.
