PROBLEM SOLVING WORKSHOP
 LESSON 4.5

2A.6.B, 2A.8.A, 2A.8.C, 2A.8.D

Using ADHERNATHNENEHODS

Another Way to Solve Example 5, page 269

MULTIIPLE REPRESENTATIONS In Example 5 on page 269, you solved a quadratic equation by finding square roots. You can also solve a quadratic equation using a table or a graph.

Problem

SCIENCE COMPETITION For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground?

METHOD 1 Using a Table One alternative approach is to write a quadratic equation and then use a table of values to solve the equation. You can use a graphing calculator to make the table.

STEP 1 Write an equation that models the situation using the height function $h=-16 t^{2}+h_{0}$.

$$
\begin{array}{ll}
\boldsymbol{h}=-16 t^{2}+\boldsymbol{h}_{0} & \text { Write height function. } \\
\mathbf{0}=-16 t^{2}+\mathbf{5 0} & \text { Substitute } \mathbf{0} \text { for } \boldsymbol{h} \text { and } 50 \text { for } \boldsymbol{h}_{\mathbf{0}}
\end{array}
$$

STEP 2 Enter the function $y=-16 x^{2}+50$ into a graphing calculator. Note that time is now represented by x and height is now represented by y.

```
Y1目-16X2+50
Y2=
Y3=
Y44=
Y5 =
Y6=
Y7=
```

STEP 3 Make a table of values for the function. Set the table so that the x-values start at 0 and increase in increments of 0.1.

STEP 4 Scroll through the table to find the time x at which the height y of the container is 0 feet.

$$
\text { The table shows that } y=0
$$ between $x=1.7$ and $x=1.8$ because y has a change of sign.

- The container hits the ground between 1.7 and 1.8 seconds after it is dropped.

