40. taks reasoning The equation $h=0.019 s^{2}$ gives the height h (in feet) of the largest ocean waves when the wind speed is s knots. Compare the wind speeds required to generate 5 foot waves and 20 foot waves.
(41.) TAKS REASONING You want to transform a square gravel parking lot with 10 foot sides into a circular lot. You want the circle to have the same area as the square so that you do not have to buy any additional gravel.

a. Model Write an equation you can use to find the radius r of the circular lot.
b. Solve What should the radius of the circular lot be?
c. Generalize In general, if a square has sides of length s, what is the radius r of a circle with the same area? Justify your answer algebraically.

41. BICYCLING The air resistance R (in pounds) on a racing cyclist is given by the equation $R=0.00829 s^{2}$ where s is the bicycle's speed (in miles per hour).
a. What is the speed of a racing cyclist who experiences 5 pounds of air resistance?
b. What happens to the air resistance if the cyclist's speed doubles? Justify your answer algebraically.

42. CHALLENGE For a swimming pool with a rectangular base, Torricelli's law implies that the height h of water in the pool t seconds after it begins draining is given by $h=\left(\sqrt{h_{0}}-\frac{2 \pi d^{2} \sqrt{3}}{l w} t\right)^{2}$ where l and w are the pool's length and width, d is the diameter of the drain, and h_{0} is the water's initial height. (All measurements are in inches.) In terms of l, w, d, and h_{0}, what is the time required to drain the pool when it is completely filled?

TAKS PRACTICE at classzone.com

MIXED REVIEW fOR TAKS

REVIEW

Lesson 2.8;
Taks Workbook

REVIEW

Lesson 2.2;
Taks Workbook
44. TAKS PRACTICE The graph of which inequality is shown? TAKS Obj. 1
(A) $y<2 x-3$
(B) $y>2 x-3$
(C) $y \leq 2 x-3$
(D) $y \geq 2 x-3$

45. TAKS PRACTICE Which two lines are perpendicular? TAKS Obj. 7
(F) $3 x+y=-1$ and $x+3 y=-24$
(G) $3 x-y=12$ and $3 x+y=15$
(H) $3 x+y=-1$ and $-x+3 y=6$
(J) $3 x-y=12$ and $x-3 y=9$

