- 19. \bigstar TAKS REASONING What is a completely simplified expression for $\sqrt{108}$?
 - \bigcirc 2 $\sqrt{27}$
- **(B)** $3\sqrt{12}$
- **(c)** $6\sqrt{3}$
- \bigcirc $10\sqrt{8}$

ERROR ANALYSIS Describe and correct the error in simplifying the expression or solving the equation.

20.

$$\sqrt{96} = \sqrt{4} \cdot \sqrt{24}$$

$$= 2\sqrt{24}$$

$$5x^{2} = 405$$

$$x^{2} = 81$$

$$x = 9$$

EXAMPLES 3 and 4

on pp. 267-268 for Exs. 21-34

SOLVING QUADRATIC EQUATIONS Solve the equation.

22.
$$s^2 = 169$$

23.
$$a^2 = 50$$

24.
$$x^2 = 84$$

25.
$$6z^2 = 150$$

26.
$$4p^2 = 448$$

$$(27.)$$
 $-3w^2 = -21.$

28.
$$7r^2 - 10 = 25$$

29.
$$\frac{x^2}{25} - 6 = -2$$

25.
$$6z^2 = 150$$
 26. $4p^2 = 448$ **27.** $-3w^2 = -213$ **28.** $7r^2 - 10 = 25$ **29.** $\frac{x^2}{25} - 6 = -2$ **30.** $\frac{t^2}{20} + 8 = 15$

31.
$$4(x-1)^2 = 8$$

32.
$$7(x-4)^2 - 18 = 10$$
 33. $2(x+2)^2 - 5 = 8$

33.
$$2(x+2)^2 - 5 = 8$$

34. TAKS REASONING What are the solutions of $3(x+2)^2+4=13$?

(B)
$$-1, 5$$
 (C) $-2 \pm \sqrt{3}$ **(D)** $2 \pm \sqrt{3}$

D
$$2 \pm \sqrt{3}$$

- 35. TAKS REASONING Describe two different methods for solving the equation $x^2 - 4 = 0$. Include the steps for each method.
- **36. \rightharpoonup TAKS REASONING** Write an equation of the form $x^2 = s$ that has (a) two real solutions, (b) exactly one real solution, and (c) no real solutions.
- **37. CHALLENGE** Solve the equation $a(x + b)^2 = c$ in terms of a, b, and c.

PROBLEM SOLVING

EXAMPLE 5

on p. 269 for Exs. 38-39 **38. CLIFF DIVING** A cliff diver dives off a cliff 40 feet above water. Write an equation giving the diver's height *h* (in feet) above the water after *t* seconds. How long is the diver in the air?

TEXAS @HomeTutor for problem solving help at classzone.com

39. ASTRONOMY On any planet, the height h (in feet) of a falling object t seconds after it is dropped can be modeled by $h = -\frac{g}{2}t^2 + h_0$ where h_0 is the object's initial height (in feet) and g is the acceleration (in feet per second squared) due to the planet's gravity. For each planet in the table, find the time it takes for a rock dropped from a height of 150 feet to hit the surface.

Planet	Earth	Mars	Jupiter	Saturn	Pluto
g (ft/sec²)	32	12	76	30	2

TEXAS @HomeTutor for problem solving help at classzone.com