EXAMPLE 5 Model a dropped object with a quadratic function

ANOTHER WAY

For alternative methods for solving the problem in Example 5, turn to page 272 for the Problem Solving Workshop.

SCIENCE COMPETITION For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground?

Solution

$$
\begin{aligned}
\boldsymbol{h} & =-16 t^{2}+\boldsymbol{h}_{0} & & \text { Write height function. } \\
0 & =-16 t^{2}+50 & & \text { Substitute } \mathbf{0} \text { for } \boldsymbol{h} \text { and } \mathbf{5 0} \text { for } \boldsymbol{h}_{\mathbf{0}} . \\
-50 & =-16 t^{2} & & \text { Subtract } 50 \text { from each side. } \\
\frac{50}{16} & =t^{2} & & \text { Divide each side by }-\mathbf{1 6 .} \\
\pm \sqrt{\frac{50}{16}} & =t & & \text { Take square roots of each side. } \\
\pm 1.8 & \approx t & & \text { Use a calculator. }
\end{aligned}
$$

After a successful egg drop

- Reject the negative solution, -1.8 , because time must be positive.

The container will fall for about 1.8 seconds before it hits the ground.

AnimatedAlgebra at classzone.com

GUIDED PRACTICE for Example 5

20. WHAT IF? In Example 5, suppose the egg container is dropped from a height of 30 feet. How long does the container take to hit the ground?

4.5 EXERCISES

 HOMEWORK= WORKED-OUT SOLUTIONS
on p. WS1 for Exs. 17, 27, and 41
= TAKS PRACTICE AND REASONING Exs. 19, 34, 35, 36, 40, 41, 44, and 45

SKILL PRACTICE

EXAMPLES
1 and 2
on pp. 266-267
for Exs. 3-20

1. VOCABULARY In the expression $\sqrt{72}$, what is 72 called?
2. WRIRITONG Explain what it means to "rationalize the denominator" of a quotient containing square roots.

SIMPLIFYING RADICAL EXPRESSIONS Simplify the expression.
3. $\sqrt{28}$
4. $\sqrt{192}$
5. $\sqrt{150}$
6. $\sqrt{3} \cdot \sqrt{27}$
7. $4 \sqrt{6} \cdot \sqrt{6}$
8. $5 \sqrt{24} \cdot 3 \sqrt{10}$
9. $\sqrt{\frac{5}{16}}$
10. $\sqrt{\frac{35}{36}}$
11. $\frac{8}{\sqrt{3}}$
12. $\frac{7}{\sqrt{12}}$
13. $\sqrt{\frac{18}{11}}$
14. $\sqrt{\frac{13}{28}}$
15. $\frac{2}{1-\sqrt{3}}$
16. $\frac{1}{5+\sqrt{6}}$
(17.) $\frac{\sqrt{2}}{4+\sqrt{5}}$
18. $\frac{3+\sqrt{7}}{2-\sqrt{10}}$

