EXAMPLE 5 Model a dropped object with a quadratic function

SCIENCE COMPETITION For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet. How long does the container take to hit the ground?

ANOTHER WAY

For alternative methods for solving the problem in Example 5, turn to page 272 for the **Problem Solving** Workshop. Solution $h = -16t^2 + h_0$ Write height function. $0 = -16t^2 + 50$ Substitute 0 for h and 50 for h_0 . $-50 = -16t^2$ Subtract 50 from each side. $\frac{50}{16} = t^2$ Divide each side by -16. $\pm \sqrt{\frac{50}{16}} = t$ Take square roots of each side. $\pm 1.8 \approx t$ Use a calculator.

After a successful egg drop

▶ Reject the negative solution, -1.8, because time must be positive. The container will fall for about 1.8 seconds before it hits the ground.

Animated Algebra at classzone.com

GUIDED PRACTICE for Example 5

20. WHAT IF? In Example 5, suppose the egg container is dropped from a height of 30 feet. How long does the container take to hit the ground?

 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 17, 27, and 41
= TAKS PRACTICE AND REASONING Exs. 19, 34, 35, 36, 40, 41, 44, and 45

Skill Practice

EXAMPLES

for Exs. 3–20

on pp. 266-267

1 and 2

- **1. VOCABULARY** In the expression $\sqrt{72}$, what is 72 called?
- 2. **WMRITUNG** *Explain* what it means to "rationalize the denominator" of a quotient containing square roots.

SIMPLIFYING RADICAL EXPRESSIONS Simplify the expression.

