RATIONALIZING THE DENOMINATOR

Suppose the denominator of a fraction has the form $\sqrt{b}, a+\sqrt{b}$, or $a-\sqrt{b}$ where a and b are rational numbers. The table shows how to eliminate the radical from the denominator. This is called rationalizing the denominator.

Form of the denominator	Multiply numerator and denominator by:
\sqrt{b}	\sqrt{b}
$a+\sqrt{b}$	$a-\sqrt{b}$
$a-\sqrt{b}$	$a+\sqrt{b}$

The expressions $a+\sqrt{b}$ and $a-\sqrt{b}$ are called conjugates of each other. Their product is always a rational number.

EXAMPLE 2 Rationalize denominators of fractions

Simplify (a) $\sqrt{\frac{5}{2}}$ and (b) $\frac{3}{7+\sqrt{2}}$.

Solution

a. $\sqrt{\frac{5}{2}}=\frac{\sqrt{5}}{\sqrt{2}}$
b. $\frac{3}{7+\sqrt{2}}=\frac{3}{7+\sqrt{2}} \cdot \frac{7-\sqrt{2}}{7-\sqrt{2}}$
$=\frac{\sqrt{5}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{\sqrt{10}}{2}$

$$
\begin{aligned}
& =\frac{21-3 \sqrt{2}}{49-7 \sqrt{2}+7 \sqrt{2}-2} \\
& =\frac{21-3 \sqrt{2}}{47}
\end{aligned}
$$

SOLVING QUADRATIC EQUATIONS You can use square roots to solve some types of quadratic equations. For example, if $s>0$, then the equation $x^{2}=s$ has two real-number solutions: $x=\sqrt{s}$ and $x=-\sqrt{s}$. These solutions are often written in condensed form as $x= \pm \sqrt{s}$ (read as "plus or minus the square root of s ").

EXAMPLE 3 Solve a quadratic equation

 equation of the form $x^{2}=s$ where $s>0$, make sure to find both the positive and negative solutions.

Solve $3 x^{2}+5=41$.

$$
\begin{aligned}
3 x^{2}+5 & =41 & & \text { Write original equation. } \\
3 x^{2} & =36 & & \text { Subtract } 5 \text { from each side. } \\
x^{2} & =12 & & \text { Divide each side by } 3 . \\
x & = \pm \sqrt{12} & & \text { Take square roots of each side. } \\
x & = \pm \sqrt{4} \cdot \sqrt{3} & & \text { Product property } \\
x & = \pm 2 \sqrt{3} & & \text { Simplify. }
\end{aligned}
$$

- The solutions are $2 \sqrt{3}$ and $-2 \sqrt{3}$.

CHECK Check the solutions by substituting them into the original equation.

$$
\begin{array}{rlrl}
3 x^{2}+5 & =41 & 3 x^{2}+5 & =41 \\
3(2 \sqrt{3})^{2}+5 & \stackrel{?}{=} 41 & 3(-2 \sqrt{3})^{2}+5 & \stackrel{?}{=} 41 \\
3(12)+5 & \stackrel{?}{=} 41 & 3(12)+5 & \stackrel{?}{=} 41 \\
41 & =41 \checkmark & 41 & =41 \checkmark
\end{array}
$$

