RATIONALIZING THE DENOMINATOR

Suppose the denominator of a fraction has the form \sqrt{b} , $a + \sqrt{b}$, or $a - \sqrt{b}$ where a and b are rational numbers. The table shows how to eliminate the radical from the denominator. This is called **rationalizing the denominator**.

Form of the denominator	Multiply numerator and denominator by:
\sqrt{b}	\sqrt{b}
$a + \sqrt{b}$	$a - \sqrt{b}$
$a - \sqrt{b}$	$a + \sqrt{b}$

The expressions $a + \sqrt{b}$ and $a - \sqrt{b}$ are called **conjugates** of each other. Their product is always a rational number.

EXAMPLE 2 Rationalize denominators of fractions			
Simplify (a) $\sqrt{\frac{5}{2}}$ and (b) $\frac{3}{7+\sqrt{2}}$.			
Solution			
a. $\sqrt{\frac{5}{2}} = \frac{\sqrt{5}}{\sqrt{2}}$	b. $\frac{3}{7+\sqrt{2}} = \frac{3}{7+\sqrt{2}} \cdot \frac{7-\sqrt{2}}{7-\sqrt{2}}$		
$=rac{\sqrt{5}}{\sqrt{2}}$ •	$\frac{\sqrt{2}}{\sqrt{2}} = \frac{21 - 3\sqrt{2}}{49 - 7\sqrt{2} + 7\sqrt{2} - 2}$		
$=\frac{\sqrt{10}}{2}$	$=\frac{21-3\sqrt{2}}{47}$		

SOLVING QUADRATIC EQUATIONS You can use square roots to solve some types of quadratic equations. For example, if s > 0, then the equation $x^2 = s$ has two real-number solutions: $x = \sqrt{s}$ and $x = -\sqrt{s}$. These solutions are often written in condensed form as $x = \pm \sqrt{s}$ (read as "plus or minus the square root of *s*").

EXAMPLE 3 Solve a quadratic equation

Solve $3x^2 + 5 = 41$.	
$3x^2 + 5 = 41$	Write original equation.
$3x^2 = 36$	Subtract 5 from each side.
$x^2 = 12$	Divide each side by 3.
$x = \pm \sqrt{12}$	Take square roots of each side.
$x = \pm \sqrt{4} \cdot \sqrt{3}$	Product property
$x = \pm 2\sqrt{3}$	Simplify.

The solutions are $2\sqrt{3}$ and $-2\sqrt{3}$.

CHECK Check the solutions by substituting them into the original equation.

$3x^2 + 5 = 41$	$3x^2 + 5 = 41$
$3(2\sqrt{3})^2 + 5 \stackrel{?}{=} 41$	$3(-2\sqrt{3})^2 + 5 \stackrel{?}{=} 41$
$3(12) + 5 \stackrel{?}{=} 41$	$3(12) + 5 \stackrel{?}{=} 41$
41 = 41 🗸	41 = 41 🗸

AVOID ERRORS

When solving an equation of the form $x^2 = s$ where s > 0, make sure to find both the positive and negative solutions.