SOLVING QUADRATIC EQUATIONS As you saw in Lesson 4.3, if the left side of the quadratic equation $a x^{2}+b x+c=0$ can be factored, then the equation can be solved using the zero product property.

EXAMPLE 5 Solve quadratic equations

Solve (a) $3 x^{2}+10 x-8=0$ and (b) $5 p^{2}-16 p+15=4 p-5$.
a. $3 x^{2}+10 x-8=0$
Write original equation.

$$
\begin{array}{rlrlrl}
(3 x-2)(x+4) & =0 & & & \\
3 x-2 & =0 & \text { or } & & x+4 & =0 \\
x & =\frac{2}{3} & \text { or } & x & =-4
\end{array}
$$

Factor.
Zero product property
Solve for \boldsymbol{x}.
b. $5 p^{2}-16 p+15=4 p-5 \quad$ Write original equation.
$5 p^{2}-20 p+20=0 \quad$ Write in standard form.

$p^{2}-4 p+4=0 \quad$ Divide each side by 5.
$(p-2)^{2}=0 \quad$ Factor.
$p-2=0 \quad$ Zero product property
$p=2 \quad$ Solve for p.

EXAMPLE 6 Use a quadratic equation as a model

QUILTS You have made a rectangular quilt that is 5 feet by 4 feet. You want to use the remaining 10 square feet of fabric to add a decorative border of uniform width to the quilt. What should the width of the quilt's border be?

Solution

Write a verbal model. Then write an equation.

Area of border (square feet)	$=$Area of quilt and border (square feet)		Area of quilt (square feet)
$\mathbf{1 0}$	$=(5+\mathbf{2 x})(\mathbf{4}+\mathbf{2 x})-$		$\mathbf{(5) (4)}$
10	$=20+18 x+4 x^{2}-20$		Multiply using FOIL.
0	$=4 x^{2}+18 x-10$		Write in standard form.
0	$=2 x^{2}+9 x-5$		Divide each side by $\mathbf{2}$.
0	$=(2 x-1)(x+5)$		Factor.
$2 x-1$	$=0 \quad$ or $\quad x+5=0$		Zero product property
x	$=\frac{1}{2} \quad$ or $\quad x=-5$		Solve for \boldsymbol{x}.

Reject the negative value, -5 . The border's width should be $\frac{1}{2} \mathrm{ft}$, or 6 in .

