4.4 Solve $ax^2 + bx + c = 0$ by Factoring

You used factoring to solve equations of the form $x^2 + bx + c = 0$. You will use factoring to solve equations of the form $ax^2 + bx + c = 0$. So you can maximize a shop's revenue, as in Ex. 64.

Key Vocabulary • monomial, p. 252 To factor $ax^2 + bx + c$ when $a \neq 1$, find integers k, l, m, and n such that: $ax^2 + bx + c = (kx + m)(lx + n) = klx^2 + (kn + lm)x + mn$

So, *k* and *l* must be factors of *a*, and *m* and *n* must be factors of *c*.

EXAMPLE 1 Factor $ax^2 + bx + c$ where c > 0

Factor $5x^2 - 17x + 6$.

Solution

EXPRESSIONS When factoring $ax^2 + bx + c$ where a > 0, it is customary to choose factors kx + mand lx + n such that kand l are positive.

FACTOR

You want $5x^2 - 17x + 6 = (kx + m)(lx + n)$ where *k* and *l* are factors of 5 and *m* and *n* are factors of 6. You can assume that *k* and *l* are positive and $k \ge l$. Because mn > 0, *m* and *n* have the same sign. So, *m* and *n* must both be negative because the coefficient of *x*, -17, is negative.

k, I	5, 1	5, 1	5, 1	5, 1
<i>m, n</i>	-6, -1	-1, -6	-3, -2	-2, -3
(kx+m)(lx+n)	(5x - 6)(x - 1)	(5x - 1)(x - 6)	(5x - 3)(x - 2)	(5x-2)(x-3)
$ax^2 + bx + c$	$5x^2 - 11x + 6$	$5x^2 - 31x + 6$	$5x^2 - 13x + 6$	$5x^2 - 17x + 6$

The correct factorization is $5x^2 - 17x + 6 = (5x - 2)(x - 3)$.

EXAMPLE 2 Factor $ax^2 + bx + c$ where c < 0

Factor $3x^2 + 20x - 7$.

Solution

You want $3x^2 + 20x - 7 = (kx + m)(lx + n)$ where *k* and *l* are factors of 3 and *m* and *n* are factors of -7. Because mn < 0, *m* and *n* have opposite signs.

k, l	3, 1	3, 1	3, 1	3, 1
<i>m, n</i>	7, -1	-1, 7	-7, 1	1, -7
(kx+m)(lx+n)	(3x + 7)(x - 1)	(3x-1)(x+7)	(3x - 7)(x + 1)	(3x + 1)(x - 7)
$ax^2 + bx + c$	$3x^2 + 4x - 7$	$3x^2 + 20x - 7$	$3x^2 - 4x - 7$	$3x^2 - 20x - 7$

The correct factorization is $3x^2 + 20x - 7 = (3x - 1)(x + 7)$.