4.4. Solve $a x^{2}+b x+c=0$ by Factoring
 2A.2.A, 2A.6.B, 2A.8.A, 2A.8.D

Before You used factoring to solve equations of the form $x^{2}+b x+c=0$.

Why? You will use factoring to solve equations of the form $a x^{2}+b x+c=0$. So you can maximize a shop's revenue, as in Ex. 64.

Key Vocabulary
-monomial, p. 252

To factor $a x^{2}+b x+c$ when $a \neq 1$, find integers k, l, m, and n such that:

$$
\boldsymbol{a} x^{2}+b x+c=(k x+m)(l x+n)=\boldsymbol{k l} x^{2}+(k n+l m) x+m n
$$

So, k and l must be factors of a, and m and n must be factors of c.

EXAMPLE 1 Factor $a x^{2}+b x+c$ where $c>0$

Factor $5 x^{2}-17 x+6$.

Solution

You want $5 x^{2}-17 x+6=(k x+m)(l x+n)$ where k and l are factors of 5 and m and n are factors of 6 . You can assume that k and l are positive and $k \geq l$. Because $m n>0, m$ and n have the same sign. So, m and n must both be negative because the coefficient of $x,-17$, is negative.

$\boldsymbol{k}, \boldsymbol{I}$	5,1	5,1	5,1	$\mathbf{5}, \mathbf{1}$
$\boldsymbol{m}, \boldsymbol{n}$	$-6,-1$	$-1,-6$	$-3,-2$	$-\mathbf{2},-\mathbf{3}$
$(\mathbf{k x}+\boldsymbol{m})(\boldsymbol{I} \mathbf{x}+\boldsymbol{n})$	$(5 x-6)(x-1)$	$(5 x-1)(x-6)$	$(5 x-3)(x-2)$	$(5 x-2)(x-3)$
$\boldsymbol{a} x^{2}+\boldsymbol{b x}+\boldsymbol{c}$	$5 x^{2}-11 x+6$	$5 x^{2}-31 x+6$	$5 x^{2}-13 x+6$	$\mathbf{5} x^{2}-\mathbf{1 7 x}+\mathbf{6}$

- The correct factorization is $5 x^{2}-17 x+6=(5 x-2)(x-3)$.

EXAMPLE 2 Factor $a x^{2}+b x+c$ where $c<0$

Factor $3 x^{2}+20 x-7$.

Solution

You want $3 x^{2}+20 x-7=(k x+m)(l x+n)$ where k and l are factors of 3 and m and n are factors of -7 . Because $m n<0, m$ and n have opposite signs.

$\boldsymbol{k}, \boldsymbol{l}$	3,1	$\mathbf{3}, \mathbf{1}$	3,1	3,1
$\boldsymbol{m}, \boldsymbol{n}$	$7,-1$	$-1,7$	$-7,1$	$1,-7$
$(\mathbf{k} \boldsymbol{x}+\boldsymbol{m})(\boldsymbol{I} \mathbf{x}+\boldsymbol{n})$	$(3 x+7)(x-1)$	$(3 x-1)(x+7)$	$(3 x-7)(x+1)$	$(3 x+1)(x-7)$
$\boldsymbol{a} x^{2}+\boldsymbol{b x}+\boldsymbol{c}$	$3 x^{2}+4 x-7$	$3 x^{2}+\mathbf{2 0 x}-7$	$3 x^{2}-4 x-7$	$3 x^{2}-20 x-7$

- The correct factorization is $3 x^{2}+20 x-7=(3 x-1)(x+7)$.

