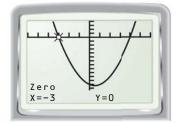
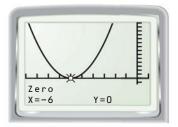
EXAMPLE 5 Find the zeros of quadratic functions

UNDERSTAND REPRESENTATIONS If a real number *k* is a zero of the function $y = ax^2 + bx + c$, then *k* is an *x*-intercept of this function's graph and *k* is also a root of the equation $ax^2 + bx + c = 0$.

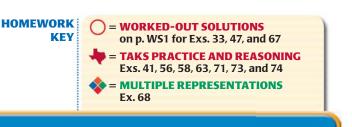

Find the zeros of the function by rewriting the function in intercept form.


a. $y = x^2 - x - 12$ b. $y = x^2 + 12x + 36$ Solution a. $y = x^2 - x - 12$ Write original function. = (x + 3)(x - 4) Factor. The zeros of the function are -3 and 4. *CHECK* Graph $y = x^2 - x - 12$. The graph passes through (-3, 0) and (4, 0). b. $y = x^2 + 12x + 36$ Write original function.

= (x + 6)(x + 6) Factor.

The zero of the function is -6.

CHECK Graph $y = x^2 + 12x + 36$. The graph passes through (-6, 0).



GUIDED PRACTICE for Example 5

Find the zeros of the function by rewriting the function in intercept form. **10.** $y = x^2 + 5x - 14$ **11.** $y = x^2 - 7x - 30$ **12.** $f(x) = x^2 - 10x + 25$

4.3 EXERCISES

Skill Practice

- **1. VOCABULARY** What is a zero of a function y = f(x)?
- **2. WRITING** *Explain* the difference between a monomial, a binomial, and a trinomial. Give an example of each type of expression.

EXAMPLE 1 on p. 252 for Exs. 3–14

FACTORING Factor the expression. If the expression cannot be factored, say so.

3. $x^2 + 6x + 5$	4. $x^2 - 7x + 10$	5. $a^2 - 13a + 22$
6. $r^2 + 15r + 56$	7. $p^2 + 2p + 4$	8. $q^2 - 11q + 28$
9. $b^2 + 3b - 40$	10. $x^2 - 4x - 12$	11. $x^2 - 7x - 18$
12. $c^2 - 9c - 18$	13. $x^2 + 9x - 36$	14. $m^2 + 8m - 65$