FACTORING SPECIAL PRODUCTS Factoring quadratic expressions often involves trial and error. However, some expressions are easy to factor because they follow special patterns.

KEY CONCEPT
For Your Notebook
Special Factoring Patterns

Pattern Name	Pattern	Example
Difference of Two Squares	$a^{2}-b^{2}=(a+b)(a-b)$	$x^{2}-4=(x+2)(x-2)$
Perfect Square Trinomial	$a^{2}+2 a b+b^{2}=(a+b)^{2}$	$x^{2}+6 x+9=(x+3)^{2}$
	$a^{2}-2 a b+b^{2}=(a-b)^{2}$	$x^{2}-4 x+4=(x-2)^{2}$

EXAMPLE 2 Factor with special patterns

Factor the expression.
a. $x^{2}-49=x^{2}-7^{2} \quad$ Difference of two squares

$$
=(x+7)(x-7)
$$

b. $d^{2}+12 d+36=d^{2}+2(d)(6)+6^{2} \quad$ Perfect square trinomial
$=(d+6)^{2}$
c. $z^{2}-26 z+169=z^{2}-2(z)(13)+13^{2} \quad$ Perfect square trinomial $=(z-13)^{2}$

Guided Practice for Example 2

Factor the expression.
4. $x^{2}-9$
5. $q^{2}-100$
6. $y^{2}+16 y+64$
7. $w^{2}-18 w+81$

SOLVING QUADRATIC EQUATIONS You can use factoring to solve certain quadratic equations. A quadratic equation in one variable can be written in the form $a x^{2}+b x+c=0$ where $a \neq 0$. This is called the standard form of the equation. The solutions of a quadratic equation are called the roots of the equation. If the left side of $a x^{2}+b x+c=0$ can be factored, then the equation can be solved using the zero product property.

KEY CONCEPT
 For Your Notebook

Zero Product Property

Words If the product of two expressions is zero, then one or both of the expressions equal zero.

Algebra If A and B are expressions and $A B=0$, then $A=0$ or $B=0$.
Example If $(x+5)(x+2)=0$, then $x+5=0$ or $x+2=0$. That is, $x=-5$ or $x=-2$.

