FACTORING SPECIAL PRODUCTS Factoring quadratic expressions often involves trial and error. However, some expressions are easy to factor because they follow special patterns.

(For Your Notebook		
Special Factoring Patterns			
Pattern	Example		
$a^2 - b^2 = (a + b)(a - b)$	$x^2 - 4 = (x + 2)(x - 2)$		
$a^2 + 2ab + b^2 = (a + b)^2$	$x^2 + 6x + 9 = (x + 3)^2$		
$a^2 - 2ab + b^2 = (a - b)^2$	$x^2 - 4x + 4 = (x - 2)^2$		
	Pattern $a^2 - b^2 = (a + b)(a - b)$ $a^2 + 2ab + b^2 = (a + b)^2$		

And the second	
FYAMDIE 7	Factor with special patterns
	I actor with special patterns

Factor the expression.	
------------------------	--

a. $x^2 - 49 = x^2 - 7^2$	Difference of two squares
= (x+7)(x-7)	
b. $d^2 + 12d + 36 = d^2 + 2(d)(6) + 6^2$	Perfect square trinomial
$= (d + 6)^2$	
c. $z^2 - 26z + 169 = z^2 - 2(z)(13) + 13^2$	Perfect square trinomial
$=(z-13)^2$	

-	GUIDED PRACTICE	for Example 2		
	Factor the expressi	on.		
	4. $x^2 - 9$	5. $q^2 - 100$	6. $y^2 + 16y + 64$	7. $w^2 - 18w + 81$

SOLVING QUADRATIC EQUATIONS You can use factoring to solve certain *quadratic equations*. A **quadratic equation** in one variable can be written in the form $ax^2 + bx + c = 0$ where $a \neq 0$. This is called the **standard form** of the equation. The solutions of a quadratic equation are called the **roots** of the equation. If the left side of $ax^2 + bx + c = 0$ can be factored, then the equation can be solved using the *zero product property*.

KEY CO	NCEPT For Your Notebook	
Zero Product Property		
Words	If the product of two expressions is zero, then one or both of the expressions equal zero.	
Algebra	If <i>A</i> and <i>B</i> are expressions and $AB = 0$, then $A = 0$ or $B = 0$.	
Example	If $(x + 5)(x + 2) = 0$, then $x + 5 = 0$ or $x + 2 = 0$. That is, $x = -5$ or $x = -2$.	