4.3 TEKS 2A.2.A, 2A.6.A, 2A.8.A, 2A.8.D	Solve $x^2 + bx + c = 0$ by Factoring	
Before	You graphed quadratic functions.	
Now	You will solve quadratic equations.	-
Why?	So you can double the area of a picnic site, as in Ex. 42.	-

Key Vocabulary

- monomial
- binomial
- trinomial
- quadratic equation
- root of an equation
- zero of a function

A **monomial** is an expression that is either a number, a variable, or the product of a number and one or more variables. A **binomial**, such as x + 4, is the sum of two monomials. A **trinomial**, such as $x^2 + 11x + 28$, is the sum of three monomials.

You know how to use FOIL to write (x + 4)(x + 7) as $x^2 + 11x + 28$. You can use factoring to write a trinomial as a product of binomials. To factor $x^2 + bx + c$, find integers *m* and *n* such that:

$$x^{2} + bx + c = (x + m)(x + n)$$

= $x^{2} + (m + n)x + mn$

So, the *sum* of *m* and *n* must equal *b* and the *product* of *m* and *n* must equal *c*.

EXAMPLE 1 Factor trinomials of the form $x^2 + bx + c$

Factor the expression.

a.
$$x^2 - 9x + 20$$

b.
$$x^2 + 3x - 12$$

Solution

a. You want $x^2 - 9x + 20 = (x + m)(x + n)$ where mn = 20 and m + n = -9.

····>	Factors of 20: <i>m</i> , <i>n</i>	1, 20	-1, -20	2, 10	-2, -10	4, 5	-4, -5
	Sum of factors: <i>m</i> + <i>n</i>	21	-21	12	-12	9	-9

Notice that m = -4 and n = -5. So, $x^2 - 9x + 20 = (x - 4)(x - 5)$.

b. You want $x^2 + 3x - 12 = (x + m)(x + n)$ where mn = -12 and m + n = 3.

Factors of -12: <i>m</i> , <i>n</i>	-1, 12	1, -12	-2, 6	2, -6	-3, 4	3, -4
Sum of factors: <i>m</i> + <i>n</i>	11	-11	4	-4	1	-1

Notice that there are no factors *m* and *n* such that m + n = 3. So, $x^2 + 3x - 12$ cannot be factored.

GUIDED PRACTICE for Example 1

Factor the expression. If the expression cannot be factored, say so.

1. $x^2 - 3x - 18$ **2.** $n^2 - 3n + 9$ **3.** $r^2 + 2r - 63$

AVOID ERRORS When factoring $x^2 + bx + c$ where c > 0, you must choose factors x + m and x + n such

that *m* and *n* have the

same sign.