54. taks reasoning A jump on a pogo stick with a conventional spring can be modeled by $y=-0.5(x-6)^{2}+18$, and a jump on a pogo stick with a bow spring can be modeled by $y=-1.17(x-6)^{2}+42$, where x and y are measured in inches. Compare the maximum heights of the jumps on the two pogo sticks. Which constants in the functions affect the maximum heights of the jumps? Which do not?
55. TAKS REASONING A kernel of popcorn contains water that expands when the kernel is heated, causing it to pop. The equations below give the "popping volume" y (in cubic centimeters per gram) of popcorn with moisture content x (as a percent of the popcorn's weight).

$$
\begin{aligned}
& \text { Hot-air popping: } y=-0.761(x-5.52)(x-22.6) \\
& \text { Hot-oil popping: } y=-0.652(x-5.35)(x-21.8)
\end{aligned}
$$

a. Interpret For hot-air popping, what moisture content maximizes popping volume? What is the maximum volume?
b. Interpret For hot-oil popping, what moisture content maximizes popping volume? What is the maximum volume?
c. Graphing Calculator Graph the functions in the same coordinate plane. What are the domain and range of each function in this situation? Explain how you determined the domain and range.
56. CHALLENGE Flying fish use their pectoral fins like airplane wings to glide through the air. Suppose a flying fish reaches a maximum height of 5 feet after flying a horizontal distance of 33 feet. Write a quadratic function $y=a(x-h)^{2}+k$ that models the flight path, assuming the fish leaves the water at $(0,0)$. Describe how changing the value of a, h, or k affects the flight path.

MIXED REVIEW FOR TAKS

REVIEW

Lesson 1.5;
TAKS Workbook

REVIEW

 TAKS Preparation p. 470;TAKS Workbook
57. TAKS PRACTICE A salesperson wants to analyze the time he spends driving to visit clients. In a typical week, the salesperson drives 870 miles during a period of 22 hours. His average speed is 65 miles per hour on the highway and 30 miles per hour in the city. About how many hours a week does the salesperson spend driving in the city? TAKS Obj. 10
(A) 6 h
(B) 8.2 h
(C) 13.9 h
(D) 16 h
58. TAKS PRACTICE What is the approximate area of the shaded region? TAKS Obj. 8
(F) $21.5 \mathrm{~cm}^{2}$
(G) $42.9 \mathrm{~cm}^{2}$
(H) $121.4 \mathrm{~cm}^{2}$
(J) $150 \mathrm{~cm}^{2}$

