42. GRAPHING CALCULATOR Consider the function $y=a(x-h)^{2}+k$ where $a=1, h=3$, and $k=-2$. Predict the effect of each change in a, h, or k described in parts (a)-(c). Use a graphing calculator to check your prediction by graphing the original and revised functions in the same coordinate plane.
a. a changes to -3
b. h changes to -1
c. k changes to 2

MAKING A GRAPH Graph the function. Label the vertex and axis of symmetry.

43. $y=5(x-2.25)^{2}-2.75$
44. $g(x)=-8(x+3.2)^{2}+6.4$
45. $y=-0.25(x-5.2)^{2}+8.5$
46. $y=-\frac{2}{3}\left(x-\frac{1}{2}\right)^{2}+\frac{4}{5}$
47. $f(x)=-\frac{3}{4}(x+5)(x+8)$
48. $g(x)=\frac{5}{2}\left(x-\frac{4}{3}\right)\left(x-\frac{2}{5}\right)$
49. TAKS REASONING Write two different quadratic functions in intercept form whose graphs have axis of symmetry $x=3$.
50. ChALLENGE Write $y=a(x-h)^{2}+k$ and $y=a(x-p)(x-q)$ in standard form. Knowing the vertex of the graph of $y=a x^{2}+b x+c$ occurs at $x=-\frac{b}{2 a}$, show that the vertex of the graph of $y=a(x-h)^{2}+k$ occurs at $x=h$ and that the vertex of the graph of $y=a(x-p)(x-q)$ occurs at $x=\frac{p+q}{2}$.

PROBLEM SOLVING

EXAMPLES
2 and 4
on pp. 246-247
for Exs. 51-54
51. BIOLOGY The function $y=-0.03(x-14)^{2}+6$ models the jump of a red kangaroo where x is the horizontal distance (in feet) and y is the corresponding height (in feet). What is the kangaroo's maximum height? How long is the kangaroo's jump?

TEXAS @HomeTutor for problem solving help at classzone.com
52. CIVIL ENGINEERING The arch of the Gateshead Millennium Bridge forms a parabola with equation $y=-0.016(x-52.5)^{2}+45$ where x is the horizontal distance (in meters) from the arch's left end and y is the distance (in meters) from the base of the arch. What is the width of the arch?
TEXAS @HomeTutor for problem solving help at classzone.com
53. MULTI-STEP PROBLEM Although a football field appears to be flat, its surface is actually shaped like a parabola so that rain runs off to both sides. The cross section of a field with synthetic turf can be modeled by

$$
y=-0.000234 x(x-160)
$$

where x and y are measured in feet.
a. What is the field's width?
b. What is the maximum height of the field's surface?

