EXAMPLE 3 Graph a quadratic function in intercept form

Graph $y=2(x+3)(x-1)$.
Solution

AVOID ERRORS

 Remember that the x-intercepts for a quadratic function written in the form $y=a(x-p)(x-q)$ are p and q, not $-p$ and $-q$.STEP 1 Identify the x-intercepts. Because $p=-3$ and $q=1$, the x-intercepts occur at the points $(-3,0)$ and $(1,0)$.

STEP 2 Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{-3+1}{2}=-1 \\
& y=2(-1+3)(-1-1)=-8
\end{aligned}
$$

So, the vertex is $(-1,-8)$.
STEP 3 Draw a parabola through the vertex and

AnimatedAlgebra at classzone.com

EXAMPLE 4 Use a quadratic function in intercept form

FOOTBALL The path of a placekicked football can be modeled by the function $y=-0.026 x(x-46)$ where x is the horizontal distance (in yards) and y is the corresponding height (in yards).
a. How far is the football kicked?
b. What is the football's maximum height?

Solution

a. Rewrite the function as $y=-0.026(x-0)(x-46)$. Because $p=0$ and $q=46$, you know the x-intercepts are 0 and 46 . So, you can conclude that the football is kicked a distance of 46 yards.
b. To find the football's maximum height, calculate the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{0+46}{2}=23 \\
& y=-0.026(23)(23-46) \approx 13.8
\end{aligned}
$$

The maximum height is the y-coordinate of the vertex, or about 13.8 yards.

Guided Practice for Examples 3 and 4

Graph the function. Label the vertex, axis of symmetry, and x-intercepts.
5. $y=(x-3)(x-7)$
6. $f(x)=2(x-4)(x+1)$
7. $y=-(x+1)(x-5)$
8. WHAT IF? In Example 4, what is the maximum height of the football if the football's path can be modeled by the function $y=-0.025 x(x-50)$?

