

39. TAKS REASONING What is the effect on the graph of the function $y = x^2 + 2$ when it is changed to $y = x^2 - 3$?

- (A) The graph widens. (B) The graph narrows.
- **(C)** The graph opens down. **(D)** The vertex moves down the *y*-axis.

40. \\$ TAKS REASONING Which function has the widest graph?

(A) $y = 2x^2$ (B) $y = x^2$ (C) $y = 0.5x^2$ (D) $y = -x^2$

IDENTIFYING COEFFICIENTS In Exercises 41 and 42, identify the values of *a*, *b*, and *c* for the quadratic function.

- **41.** The path of a basketball thrown at an angle of 45° can be modeled by $y = -0.02x^2 + x + 6$.
- **42.** The path of a shot put released at an angle of 35° can be modeled by $y = -0.01x^2 + 0.7x + 6$.

43. \downarrow TAKS REASONING Write three different quadratic functions whose graphs have the line x = 4 as an axis of symmetry but have different *y*-intercepts.

MATCHING In Exercises 44–46, match the equation with its graph.

MAKING A GRAPH Graph the function. Label the vertex and axis of symmetry.

47. $f(x) = 0.1x^2 + 2$	48. $g(x) = -0.5x^2 - 5$	49. $y = 0.3x^2 + 3x - 1$
50. $y = 0.25x^2 - 1.5x + 3$	51. $f(x) = 4.2x^2 + 6x - 1$	52. $g(x) = 1.75x^2 - 2.5$

- **53. TAKS REASONING** The points (2, 3) and (-4, 3) lie on the graph of a quadratic function. *Explain* how these points can be used to find an equation of the axis of symmetry. Then write an equation of the axis of symmetry.
- **54. CHALLENGE** For the graph of $y = ax^2 + bx + c$, show that the *y*-coordinate of the vertex is $-\frac{b^2}{4a} + c$.