EXAMPLE 4
on p. 239
for Exs. 33-38

MINIMUIMS OR MAXIMUMS Tell whether the function has a minimum value or a maximum value. Then find the minimum or maximum value.
33. $y=-6 x^{2}-1$
34. $y=9 x^{2}+7$
35. $f(x)=2 x^{2}+8 x+7$
36. $g(x)=-3 x^{2}+18 x-5$
(37. $f(x)=\frac{3}{2} x^{2}+6 x+4$
38. $y=-\frac{1}{4} x^{2}-7 x+2$
39. TAKS REASONING What is the effect on the graph of the function $y=x^{2}+2$ when it is changed to $y=x^{2}-3$?
(A) The graph widens.
(B) The graph narrows.
(C) The graph opens down.
(D) The vertex moves down the y-axis.
40. TAKS REASONING Which function has the widest graph?
(A) $y=2 x^{2}$
(B) $y=x^{2}$
(C) $y=0.5 x^{2}$
(D) $y=-x^{2}$

IDENTIFYING COEFFICIENTS In Exercises 41 and 42, identify the values of a, b, and \boldsymbol{c} for the quadratic function.
41. The path of a basketball thrown at an angle of 45° can be modeled by $y=-0.02 x^{2}+x+6$.
42. The path of a shot put released at an angle of 35° can be modeled by $y=-0.01 x^{2}+0.7 x+6$.

43. TAKS REASONING Write three different quadratic functions whose graphs have the line $x=4$ as an axis of symmetry but have different y-intercepts.

MATCHING In Exercises 44-46, match the equation with its graph.
44. $y=0.5 x^{2}-2 x$
45. $y=0.5 x^{2}+3$
46. $y=0.5 x^{2}-2 x+3$
A.

B.

C.

MAKING A GRAPH Graph the function. Label the vertex and axis of symmetry.
47. $f(x)=0.1 x^{2}+2$
48. $g(x)=-0.5 x^{2}-5$
49. $y=0.3 x^{2}+3 x-1$
50. $y=0.25 x^{2}-1.5 x+3$
51. $f(x)=4.2 x^{2}+6 x-1$
52. $g(x)=1.75 x^{2}-2.5$
53. TAKS REASONING The points $(2,3)$ and $(-4,3)$ lie on the graph of a quadratic function. Explain how these points can be used to find an equation of the axis of symmetry. Then write an equation of the axis of symmetry.
54. CHALLENGE For the graph of $y=a x^{2}+b x+c$, show that the y-coordinate of the vertex is $-\frac{b^{2}}{4 a}+c$.

