EXAMPLE 4 Find the minimum or maximum value

Tell whether the function $y=3 x^{2}-18 x+20$ has a minimum value or a maximum value. Then find the minimum or maximum value.

Solution

Because $a>0$, the function has a minimum value. To find it, calculate the coordinates of the vertex.

$$
\begin{aligned}
& x=-\frac{b}{2 a}=-\frac{(-18)}{2(3)}=3 \\
& y=3(3)^{2}-18(3)+20=-7
\end{aligned}
$$

- The minimum value is $y=-7$. You can check the answer on a graphing calculator.

ExAMPLE 5 TAKS REASONING: Multi-Step Problem

GO-CARTS A go-cart track has about 380 racers per week and charges each racer $\$ 35$ to race. The owner estimates that there will be 20 more racers per week for every $\$ 1$ reduction in the price per racer. How can the owner of the go-cart track maximize weekly revenue?

Solution

STEP 1 Define the variables. Let x represent the price reduction and $R(x)$ represent the weekly revenue.

STEP 2 Write a verbal model. Then write and simplify a quadratic function.

Revenue (dollars)	$=$	Price (dollars/racer)	\quadAttendance (racers)
$\boldsymbol{R (x)}$	$=(\mathbf{3 5 - \boldsymbol { x })} \quad \cdot$	$(\mathbf{3 8 0}+\mathbf{2 0 \boldsymbol { x }})$	
$R(x)$	$=$	$13,300+700 x-380 x-20 x^{2}$	
$R(x)$	$=$	$-20 x^{2}+320 x+13,300$	

STEP 3 Find the coordinates $(x, R(x))$ of the vertex.

$$
\begin{array}{ll}
x=-\frac{b}{2 a}=-\frac{320}{2(-20)}=8 & \text { Find } x \text {-coordinate. } \\
R(8)=-20(8)^{2}+320(8)+13,300=14,580 & \text { Evaluate } R(8) .
\end{array}
$$

- The vertex is $(8,14,580)$, which means the owner should reduce the price per racer by $\$ 8$ to increase the weekly revenue to $\$ 14,580$.

Guided Practice for Examples 4 and 5

7. Find the minimum value of $y=4 x^{2}+16 x-3$.
8. WHAT IF? In Example 5, suppose each $\$ 1$ reduction in the price per racer brings in 40 more racers per week. How can weekly revenue be maximized?
