EXAMPLE 3 Graph a function of the form $y=a x^{2}+b x+c$

Graph $y=2 x^{2}-8 x+6$.

Solution

STEP 1 Identify the coefficients of the function. The coefficients are $a=2$, $b=-8$, and $c=6$. Because $a>0$, the parabola opens up.

STEP 2 Find the vertex. Calculate the x-coordinate.

AVOID ERRORS

 Be sure to include the negative sign before the fraction when calculating the x-coordinate of the vertex.$$
x=-\frac{b}{2 a}=-\frac{(-8)}{2(2)}=2
$$

Then find the y-coordinate of the vertex.

$$
y=2(2)^{2}-8(2)+6=-2
$$

So, the vertex is $(2,-2)$. Plot this point.
STEP 3 Draw the axis of symmetry $x=2$.

STEP 4 Identify the y-intercept c, which is 6 . Plot the point $(0,6)$. Then reflect this point in the axis of symmetry to plot another point, $(4,6)$.

STEP 5 Evaluate the function for another value of x, such as $x=1$.

$$
y=2(1)^{2}-8(1)+6=0
$$

Plot the point $(1,0)$ and its reflection $(3,0)$ in the axis of symmetry.

STEP 6 Draw a parabola through the plotted points.

AnimatedAlgebra at classzone.com

Guided Practice for Example 3

Graph the function. Label the vertex and axis of symmetry.
4. $y=x^{2}-2 x-1$
5. $y=2 x^{2}+6 x+3$
6. $f(x)=-\frac{1}{3} x^{2}-5 x+2$

KEY CONCEPT

For Your Notebook

Minimum and Maximum Values

Words For $y=a x^{2}+b x+c$, the vertex's y-coordinate is the minimum value of the function if $a>0$ and the maximum value if $a<0$.

Graphs

a is positive

a is negative

