Graph $y = -\frac{1}{2}x^2 + 3$. Compare the graph with the graph of $y = x^2$.

Solution

.....

STEP 1 Make a table of values for $v = -\frac{1}{2}r^2 + 3$

SKETCH A GRAPH

Choose values of x that are multiples of 2 so that the values of y will be integers.

5/11/1	Marc	a table	or varu	cs 101 y	-2^{λ}	1 3.	
	x	-4	-2	0	2	4	
	У	-5	1	3	1	-5	
STEP 2 STEP 3	Plot the points from the table. Draw a smooth curve through the points.						
STEP 4	Compare the graphs of $y = -\frac{1}{2}x^2 + 3$ and						
	$y = x^2$. Both graphs have the same axis of						

symmetry. However, the graph of $y = -\frac{1}{2}x^2 + 3$ opens down and is wider than the graph of $y = x^2$. Also, its vertex is 3 units higher.

GUIDED PRACTICE	for Examples 1 and 2	
Graph the function	. Compare the graph with the gra	where $y = x^2$.
1. $y = -4x^2$	2. $y = -x^2 - 5$	3. $f(x) = \frac{1}{4}x^2 + 2$

GRAPHING ANY QUADRATIC FUNCTION You can use the following properties to graph *any* quadratic function $y = ax^2 + bx + c$, including a function where $b \neq 0$.

