EXAMPLE 2 Graph a function of the form $y=a x^{2}+c$

Graph $y=-\frac{1}{2} x^{2}+3$. Compare the graph with the graph of $y=x^{2}$.

Solution

STEP 1 Make a table of values for $y=-\frac{1}{2} x^{2}+3$.

SKETCH A GRAPH

 Cohoose values of x that are multiples of 2 so that the values of y will be integers.| x | -4 | -2 | 0 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | -5 | 1 | 3 | 1 | -5 |

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.
STEP 4 Compare the graphs of $y=-\frac{1}{2} x^{2}+3$ and
 $y=x^{2}$. Both graphs have the same axis of symmetry. However, the graph of $y=-\frac{1}{2} x^{2}+3$ opens down and is wider than the graph of $y=x^{2}$. Also, its vertex is 3 units higher.

GUIDED Practice for Examples 1 and 2

Graph the function. Compare the graph with the graph of $y=x^{2}$.

1. $y=-4 x^{2}$
2. $y=-x^{2}-5$
3. $f(x)=\frac{1}{4} x^{2}+2$

GRAPHING ANY QUADRATIC FUNCTION You can use the following properties to graph any quadratic function $y=a x^{2}+b x+c$, including a function where $b \neq 0$.

KEY CONCEPT
 For Your Notebook

Properties of the Graph of $y=a x^{2}+b x+c$
$y=a x^{2}+b x+c, a>0$

Characteristics of the graph of $y=a x^{2}+b x+c$:

- The graph opens up if $a>0$ and opens down if $a<0$.
- The graph is narrower than the graph of $y=x^{2}$ if $|a|>1$ and wider if $|a|<1$.
- The axis of symmetry is $x=-\frac{b}{2 a}$ and the vertex has x-coordinate $-\frac{b}{2 a}$.
- The y-intercept is c. So, the point $(0, c)$ is on the parabola.

