## **4.1** Graph Quadratic Functions in Standard Form



You graphed linear functions. You will graph quadratic functions. So you can model sports revenue, as in Example 5.

#### Key Vocabulary

- quadratic function
- parabola
- vertex
- axis of symmetry
- minimum value
- maximum value

A **quadratic function** is a function that can be written in the **standard form**  $y = ax^2 + bx + c$  where  $a \neq 0$ . The graph of a quadratic function is a **parabola**.

# KEY CONCEPT

## Parent Function for Quadratic Functions

The parent function for the family of all quadratic functions is  $f(x) = x^2$ . The graph of  $f(x) = x^2$  is the parabola shown below.



For  $f(x) = x^2$ , and for any quadratic function  $g(x) = ax^2 + bx + c$  where b = 0, the vertex lies on the *y*-axis and the axis of symmetry is x = 0.

### **EXAMPLE 1** Graph a function of the form $y = ax^2$

Graph  $y = 2x^2$ . Compare the graph with the graph of  $y = x^2$ .

#### **Solution**

**STEP 1** Make a table of values for  $y = 2x^2$ .

| <b>SKETCH A GRAPH</b><br>Choose values of <i>x</i> on <i>both</i> sides of the axis of symmetry <i>x</i> = 0. | ·····> | x<br>y                                                                                                                                                                                   | -2<br>8 | -1<br>2 | 0 | 1<br>2 | 2<br>8 |  |
|---------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---|--------|--------|--|
|                                                                                                               | STEP 2 | Plot the points from the table.                                                                                                                                                          |         |         |   |        |        |  |
|                                                                                                               | STEP 3 | Draw a smooth curve through the points.                                                                                                                                                  |         |         |   |        |        |  |
|                                                                                                               | STEP 4 | <b>Compare</b> the graphs of $y = 2x^2$ and $y = x^2$ .<br>Both open up and have the same vertex and axis of symmetry. The graph of $y = 2x^2$ is narrower than the graph of $y = x^2$ . |         |         |   |        |        |  |



For Your Notebook