3.4

Solve Systems of Linear Equations in Three Variables pp. 178–185

EXAMPLE

Solve the system.

2x + y + 3z = 5	Equation 1
-x + 3y + z = -14	Equation 2
3x - y - 2z = 11	Equation 3

Rewrite the system as a linear system in two variables. Add -3 times Equation 1 to Equation 2. Then add Equation 1 and Equation 3.

-6x -	3y - 9z = -15	2x + y + 3z = 5
- <i>x</i> +	3y + z = -14	3x - y - 2z = 11
-7x	-8z = -29	5x + z = 16

Solve the new linear system for both of its variables.

-7x - 8z = -29	Add new Equation 1 to
40x + 8z = 128	8 times new Equation 2.
33x = 99	
x = 3	Solve for x.
z = 1	Substitute into new Equation 1 or 2 to find z.

Substituting x = 3 and z = 1 into one of the original equations and solving for y gives y = -4. The solution is (3, -4, 1).

EXERCISES

EXAMPLES 1 and 4 on pp. 179–181 for Exs. 14–17 Solve the system.

14. $x - y + z = 10$	15. $6x - y + 4z = 6$	16. $5x + y - z = 40$
4x + y - 2z = 15	-x - 3y + z = 31	x + 7y + 4z = 44
-3x + 5y - z = -18	2x + 2y - 5z = -42	-x + 3y + z = 16

17. **MUSIC** Fifteen band members from a school were selected to play in the state orchestra. Twice as many students who play a wind instrument were selected as students who play a string or percussion instrument combined. Of the students selected, one fifth play a string instrument. How many of the students selected play each type of instrument?

