

Big Idea 🚺

текз 2А.З.В

BIG IDEAS

For Your Notebook

Solving Systems of Equations Using a Variety of Methods

Method	When to use	
Graphing: Graph each equation in the system. A point where the graphs intersect is a solution.	The equations have only two variables and are given in a form that is easy to graph.	
Substitution: Solve one equation for one of the variables and substitute into the other equation(s).	One of the variables in the system has a coefficient of 1 or -1 .	
Elimination: Multiply equations by constants, then add the revised equations to eliminate a variable.	None of the variables in the system have a coefficient of 1 or -1 .	
Cramer's rule: Use determinants to find the solution.	The determinant of the coefficient matrix is not zero.	
Inverse matrices: Write the system as a matrix equation $AX = B$. Multiply each side by A^{-1} on the left to obtain the solution $X = A^{-1}B$.	The determinant of the coefficient matrix is not zero.	

ТЕКЅ 2А.З.А

Big Idea 🔞

текз а.2

Graphing Systems of Equations and Inequalities

Using Matrices

Addition, subtraction, and scalar multiplication	Matrix multiplication	Inverse matrices
$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} =$	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then
$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$	$\begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$	$A^{-1} = \frac{1}{ A } \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $ or
$k\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$		$A^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$