CHAPTER SUMMARY

BIG IDEAS

Big Idea 1

teks 2A.3.B

Solving Systems of Equations Using a Variety of Methods

Method	When to use
Graphing: Graph each equation in the system. A point where the graphs intersect is a solution.	The equations have only two variables and are given in a form that is easy to graph.
Substitution: Solve one equation for one of the variables and substitute into the other equation(s).	One of the variables in the system has a coefficient of 1 or -1.
Elimination: Multiply equations by constants, then add the revised equations to eliminate a variable.	None of the variables in the system have a coefficient of 1 or -1.
Cramer's rule: Use determinants to find the solution.	The determinant of the coefficient matrix is not zero.
Inverse matrices: Write the system as a matrix equation $A X=B$. Multiply each side by A^{-1} on the left to obtain the solution $X=A^{-1} B$.	The determinant of the coefficient matrix is not zero.

Big Idea (2)

teks 2A.3.A

Big Idea

Graphing Systems of Equations and Inequalities

System of equations
with 1 solution

Intersecting lines

System of equations with many solutions

Coinciding lines

System of equations with no solution

Parallel lines

Shaded region

Using Matrices

Addition, subtraction, and scalar multiplication	Matrix multiplication	Inverse matrices
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$	$\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]\left[\begin{array}{ll} e & f \\ g & h \end{array}\right]=$	If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then
$\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]-\left[\begin{array}{ll} e & f \\ g & h \end{array}\right]=\left[\begin{array}{ll} a-e & b-f \\ c-g & d-h \end{array}\right]$	$\left[\begin{array}{cc}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$	$A^{-1}=\frac{1}{\|A\|}\left[\begin{array}{rr} d & -b \\ -c & a \end{array}\right] \text { or }$
$k\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} k a & k b \\ k c & k d \end{array}\right]$		$A^{-1}=\frac{1}{a d-c b}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.

