

текь 2А.З.А, 2А.З.В, 2А.З.С

Using ALTERNATIVE METHODS

Another Way to Solve Example 5, page 213

MULTIPLE REPRESENTATIONS In Example 5 on page 213, you solved a linear system using an inverse matrix. You can also solve systems using *augmented matrices*. An **augmented matrix** for a system contains the system's coefficient matrix and matrix of constants.

Recall from Lesson 3.2 that an equation in a system can be multiplied by a constant, or a multiple of one equation can be added to another equation. Similar operations can be performed on the rows of an augmented matrix to solve the corresponding system.

KEY CONCEPT

For Your Notebook

Elementary Row Operations for Augmented Matrices

Two augmented matrices are *row-equivalent* if their corresponding systems have the same solution(s). Any of these row operations performed on an augmented matrix will produce a matrix that is row-equivalent to the original:

- Interchange two rows.
- Multiply a row by a nonzero constant.
- Add a multiple of one row to another row.

PROBLEM

GIFTS A company sells three types of movie gift baskets. A basic basket with 2 movie passes and 1 package of microwave popcorn costs \$15.50. A medium basket with 2 movie passes, 2 packages of popcorn, and 1 DVD costs \$37. A super basket with 4 movie passes, 3 packages of popcorn, and 2 DVDs costs \$72.50. Find the cost of each item in the gift baskets.

Метнор

Using an Augmented Matrix You need to write a linear system, write the corresponding augmented matrix, and use row operations to transform the augmented matrix into a matrix with 1's along the main diagonal and 0's below the main diagonal. Such a matrix is in *triangular form* and can be used to solve for the variables in the system.

Let *m* be the cost of a movie pass, *p* be the cost of a package of popcorn, and *d* be the cost of a DVD.