50. CHALLENGE Verify the formula on page 210 for the inverse of a 2×2 matrix by showing that $A B=I$ and $B A=I$ for the matrices A and B given below.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad B=\frac{1}{a d-c b}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW

TAKS Preparation p. 66;

TAKS Workbook

REVIEW

Lesson 1.3;
TAKS Workbook

REVIEW

Lesson 3.2;
TAKS Workbook
51. TAKS PRACTICE A grocer wants to mix peanuts worth $\$ 2.50$ per pound with 12 pounds of cashews worth $\$ 4.75$ per pound. To obtain a nut mixture worth $\$ 4$ per pound, how many pounds of peanuts are needed? TAKS Obj. 10
(A) 3.6 lb
(B) 6 lb
(C) 12 lb
(D) 18 lb
52. TAKS PRACTICE The sum of three numbers is 141 . The second number is 5 less than three times the first number. The third number is 2 more than four times the first number. Which equation represents the relationship between the three numbers where n is the first number? TAKS Obj. 1
(F) $141=n-(3 n-5)-(4 n+2)$
(G) $141=n+(4 n-5)+(3 n+2)$
(H) $141=n+(3 n-5)+(4 n+2)$
(J) $141=n+(5-3 n)+(2+4 n)$
53. TAKS PRACTICE Which ordered pair is the solution of this system of linear equations? TAKS Obj. 4

$$
\begin{aligned}
& 5 x+y=-17 \\
& 2 x-7 y=8
\end{aligned}
$$

(A) $(-3,-2)$
(B) $(-3,2)$
(C) $\left(3,-\frac{2}{7}\right)$
(D) $(11,2)$

QUZ for Lessons 3.6-3.8

Using the given matrices, evaluate the expression. (p. 195)

$$
A=\left[\begin{array}{rr}
1 & -4 \\
5 & 2
\end{array}\right], B=\left[\begin{array}{rr}
2 & -3 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{rr}
-6 & -1 \\
2 & 4
\end{array}\right]
$$

1. $2 A B$
2. $A B+A C$
3. $A(B+C)$
4. $(B-A) C$

Evaluate the determinant of the matrix. (p. 203)
5. $\left[\begin{array}{rr}5 & 4 \\ -2 & -3\end{array}\right]$
6. $\left[\begin{array}{rrr}1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & 3 & -1\end{array}\right]$
7. $\left[\begin{array}{rrr}2 & -1 & 5 \\ -3 & 6 & 9 \\ -2 & 3 & 1\end{array}\right]$

Use an inverse matrix to solve the linear system. (p. 210)
8. $x+3 y=-2$
$2 x+7 y=-6$
9. $3 x-4 y=5$
$2 x-3 y=3$
10. $\begin{aligned} & -3 x+2 y=-13 \\ & 6 x-5 y=24\end{aligned}$ $6 x-5 y=24$
11. $\begin{aligned} & 3 x-y=-4 \\ & 2 x-2 y=-8\end{aligned}$
12. $\begin{aligned} 7 x+4 y & =6 \\ 5 x+3 y & =-25\end{aligned}$
13. $4 x+y=-2$
$-6 x+y=18$
14. BOATING You are making a triangular sail for a sailboat. The vertices of the sail are $(0,2),(12,2)$, and $(12,26)$ where the coordinates are measured in feet. Find the area of the sail. (p. 203)

