GUIDED PRACTICE for Example 3

Use a graphing calculator to find the inverse of the matrix A. Check the result by showing that $A A^{-1}=I$ and $A^{-1} A=I$.
5. $A=\left[\begin{array}{rrr}2 & -2 & 0 \\ 2 & 0 & -2 \\ 12 & -4 & -6\end{array}\right]$
6. $A=\left[\begin{array}{rrr}-3 & 4 & 5 \\ 1 & 5 & 0 \\ 5 & 2 & 2\end{array}\right]$
7. $A=\left[\begin{array}{rrr}2 & 1 & -2 \\ 5 & 3 & 0 \\ 4 & 3 & 8\end{array}\right]$

KEY CONCEPT
 For Your Notebook

Using an Inverse Matrix to Solve a Linear System

STEP 1 Write the system as a matrix equation $A X=B$. The matrix A is the coefficient matrix, X is the matrix of variables, and B is the matrix of constants.

STEP 2 Find the inverse of matrix A.
STEP 3 Multiply each side of $A X=B$ by A^{-1} on the left to find the solution $X=A^{-1} B$.

EXAMPLE 4 Solve a linear system

SOLVE SYSTEMS

You can use the method shown in Example 4 if A has an inverse. If A does not have an inverse, then the system has either no solution or infinitely many solutions.

Use an inverse matrix to solve the linear system.

$$
\begin{array}{ll}
2 x-3 y=19 & \text { Equation } 1 \\
x+4 y=-7 & \text { Equation } 2
\end{array}
$$

Solution

STEP 1 Write the linear system as a matrix equation $A X=B$.
coefficient matrix of matrix of matrix $(A) \quad$ variables $(X) \quad$ constants (B)

$$
\left[\begin{array}{rr}
2 & -3 \\
1 & 4
\end{array}\right] \quad\left[\quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad=\left[\begin{array}{c}
19 \\
-7
\end{array}\right]\right.
$$

STEP 2 Find the inverse of matrix A.

$$
A^{-1}=\frac{1}{8-(-3)}\left[\begin{array}{rr}
4 & 3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
\frac{4}{11} & \frac{3}{11} \\
-\frac{1}{11} & \frac{2}{11}
\end{array}\right]
$$

STEP 3 Multiply the matrix of constants by A^{-1} on the left.

$$
X=A^{-1} B=\left[\begin{array}{cc}
\frac{4}{11} & \frac{3}{11} \\
-\frac{1}{11} & \frac{2}{11}
\end{array}\right]\left[\begin{array}{c}
19 \\
-7
\end{array}\right]=\left[\begin{array}{r}
5 \\
-3
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- The solution of the system is $(5,-3)$.

CHECK $2(5)-3(-3)=10+9=19 \checkmark 5+4(-3)=5-12=-7 \checkmark$

[^0]
[^0]: AinimatedAlgebra at classzone.com

