EXAMPLE 2 Solve a matrix equation

Solve the matrix equation $A X=B$ for the 2×2 matrix X.

$$
\overbrace{\left[\begin{array}{rr}
2 & -7 \\
-1 & 4
\end{array}\right]}^{A} X=\overbrace{\left[\begin{array}{rr}
-21 & 3 \\
12 & -2
\end{array}\right]}^{B}
$$

Solution

Begin by finding the inverse of A.

$$
A^{-1}=\frac{1}{8-7}\left[\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right]
$$

To solve the equation for X, multiply both sides of the equation by A^{-1} on the left.

$$
\begin{array}{rll}
{\left[\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
2 & -7 \\
-1 & 4
\end{array}\right] X} & =\left[\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
-21 & 3 \\
12 & -2
\end{array}\right] & \boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{A}^{-1} \boldsymbol{B} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] X} & =\left[\begin{array}{ll}
0 & -2 \\
3 & -1
\end{array}\right] & \boldsymbol{X} \boldsymbol{X}=\boldsymbol{A}^{-1} \boldsymbol{B} \\
X & =\left[\begin{array}{ll}
0 & -2 \\
3 & -1
\end{array}\right] & X=\boldsymbol{A}^{-1} \boldsymbol{B}
\end{array}
$$

Animated Algebra at classzone.com

GUIDED PRACTICE for Example 2

4. Solve the matrix equation $\left[\begin{array}{rr}-4 & 1 \\ 0 & 6\end{array}\right] X=\left[\begin{array}{rr}8 & 9 \\ 24 & 6\end{array}\right]$.

INVERSE OFA $\mathbf{3 \times 3} \times \mathbf{M A T R I X}$ The inverse of a 3×3 matrix is difficult to compute by hand. A calculator that will compute inverse matrices is useful in this case.

EXAMPLE 3 Find the inverse of a 3×3 matrix

Use a graphing calculator to find the inverse of A. Then use the calculator to verify your result.

$$
A=\left[\begin{array}{rrr}
2 & 1 & -2 \\
5 & 3 & 0 \\
4 & 3 & 8
\end{array}\right]
$$

Solution

Enter matrix A into a graphing calculator and calculate A^{-1}. Then compute $A A^{-1}$ and $A^{-1} A$ to verify that you obtain the 3×3 identity matrix.

