3.8
 2A.2.A, 2A.3.A, 2A.3.B, 2A.3.C

Before
You solved linear systems using Cramer's rule. You will solve linear systems using inverse matrices. So you can find how many batches of a recipe to make, as in Ex. 45.

Key Vocabulary

- identity matrix
- inverse matrices
- matrix of variables
- matrix of constants

The $n \times n$ identity matrix is a matrix with l's on the main diagonal and 0 's elsewhere. If A is any $n \times n$ matrix and I is the $n \times n$ identity matrix, then $A I=A$ and $I A=A$.
2×2 Identity Matrix

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

3×3 Identity Matrix
$I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Two $n \times n$ matrices A and B are inverses of each other if their product (in both orders) is the $n \times n$ identity matrix. That is, $A B=I$ and $B A=I$. An $n \times n$ matrix A has an inverse if and only if $\operatorname{det} A \neq 0$. The symbol for the inverse of A is A^{-1}.

KEY CONCEPT

For Your Notebook

The Inverse of a $\mathbf{2 \times 2} \mathbf{2}$ Matrix

The inverse of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{a d-c b}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \text { provided } a d-c b \neq 0 .
$$

EXAMPLE 1 Find the inverse of a 2×2 matrix

Find the inverse of $A=\left[\begin{array}{ll}3 & 8 \\ 2 & 5\end{array}\right]$.

$$
A^{-1}=\frac{1}{15-16}\left[\begin{array}{rr}
5 & -8 \\
-2 & 3
\end{array}\right]=-1\left[\begin{array}{rr}
5 & -8 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{rr}
-5 & 8 \\
2 & -3
\end{array}\right]
$$

Guided Practice for Example 1

Find the inverse of the matrix.

1. $\left[\begin{array}{ll}6 & 1 \\ 2 & 4\end{array}\right]$
2. $\left[\begin{array}{ll}-1 & 5 \\ -4 & 8\end{array}\right]$
3. $\left[\begin{array}{ll}-3 & -4 \\ -1 & -2\end{array}\right]$
