KEY CONCEPT

Cramer's Rule for a $\mathbf{3} \times \mathbf{3}$ System

Let A be the coefficient matrix of the linear system shown below.

Linear System

$$
\begin{gathered}
a x+b y+c z=j \\
d x+e y+f z=k \\
g x+h y+i z=l
\end{gathered}
$$

Coefficient Matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

If $\operatorname{det} A \neq 0$, then the system has exactly one solution. The solution is:

$$
x=\frac{\left|\begin{array}{lll}
j & b & c \\
k & e & f \\
l & h & i
\end{array}\right|}{\operatorname{det} A},
$$

$$
y=\frac{\left|\begin{array}{ccc}
a & j & c \\
d & k & f \\
g & l & i
\end{array}\right|}{\operatorname{det} A}
$$

$$
z=\frac{\left|\begin{array}{lll}
a & b & j \\
d & e & k \\
g & h & l
\end{array}\right|}{\operatorname{det} A}
$$

EXAMPLE 4 TAKS REASONING: Multi-Step Problem

CHEMISTRY The atomic weights of three compounds are shown. Use a linear system and Cramer's rule to find the atomic weights of carbon (C), hydrogen (H), and oxygen (O).

Compound	Formula	Atomic weight
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	180
Carbon dioxide	CO_{2}	44
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	34

Solution

STEP 1 Write a linear system using the formula for each compound. Let C, H, and O represent the atomic weights of carbon, hydrogen, and oxygen.

$$
\begin{aligned}
6 C+12 H+6 O & =180 \\
C \quad+2 O & =44 \\
2 H+2 O & =34
\end{aligned}
$$

STEP 2 Evaluate the determinant of the coefficient matrix.

$$
\left\lvert\, \begin{array}{rrr|rr}
6 & 12 & 6 & 6 & 12 \\
1 & 0 & 2 & 1 & 0 \\
0 & 2 & 2 & 0 & 2
\end{array}=(0+0+12)-(0+24+24)=-36\right.
$$

STEP 3 Apply Cramer's rule because the determinant is not 0 .

$$
\begin{aligned}
C & =\frac{\left|\begin{array}{rrr}
180 & 12 & 6 \\
44 & 0 & 2 \\
34 & 2 & 2
\end{array}\right|}{-36} & H & =\frac{\left|\begin{array}{rrr}
6 & 180 & 6 \\
1 & 44 & 2 \\
0 & 34 & 2
\end{array}\right|}{-36}
\end{aligned} \quad O=\frac{\left|\begin{array}{rrr}
6 & 12 & 180 \\
1 & 0 & 44 \\
0 & 2 & 34
\end{array}\right|}{-36}
$$

The atomic weights of carbon, hydrogen, and oxygen are 12, 1, and 16, respectively.

