CRAMER'S RULE You can use determinants to solve a system of linear equations. The method, called Cramer's rule and named after the Swiss mathematician Gabriel Cramer (1704-1752), uses the coefficient matrix of the linear system.

Linear System Coefficient Matrix

$$
\begin{aligned}
a x+b y & =e \\
c x+d y & =f
\end{aligned}
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

KEY CONCEPT

For Your Notebook

Cramer's Rule for a 2×2 System

Let A be the coefficient matrix of this linear system:

$$
\begin{aligned}
a x+b y & =e \\
c x+d y & =f
\end{aligned}
$$

If $\operatorname{det} A \neq 0$, then the system has exactly one solution. The solution is:

$$
x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\operatorname{det} A} \quad \text { and } \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\operatorname{det} A}
$$

Notice that the numerators for x and y are the determinants of the matrices formed by replacing the coefficients of x and y, respectively, with the column of constants.

EXAMPLE 3 Use Cramer's rule for a 2×2 system

Use Cramer's rule to solve this system: $\begin{aligned} & 9 x+4 y=-6 \\ & 3 x-5 y=-21\end{aligned}$

Solution

STEP 1 Evaluate the determinant of the coefficient matrix.

$$
\left|\begin{array}{rr}
9 & 4 \\
3 & -5
\end{array}\right|=-45-12=-57
$$

STEP 2 Apply Cramer's rule because the determinant is not 0 .

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{rr}
-6 & 4 \\
-21 & -5
\end{array}\right|}{-57}=\frac{30-(-84)}{-57}=\frac{114}{-57}=-2 \\
& y=\frac{\left|\begin{array}{rr}
9 & -6 \\
3 & -21
\end{array}\right|}{-57}=\frac{-189-(-18)}{-57}=\frac{-171}{-57}=3
\end{aligned}
$$

- The solution is $(-2,3)$.

CHECK Check this solution in the original equations.

$$
\begin{array}{rlrl}
9 x+4 y & =-6 & 3 x-5 y & =-21 \\
9(-2)+4(3) \stackrel{?}{=}-6 & 3(-2)-5(3) \stackrel{?}{=}-21 \\
-18+12 & \stackrel{?}{=}-6 & -6-15 & \stackrel{?}{=}-21 \\
-6 & =-6 \checkmark & -21 & =-21
\end{array}
$$

