3.7 Solution Before Evaluate Determinants and Apply Cramer's Rule You added, subtracted, and multiplied matrices.

You added, subtracted, and multiplied matrices. You will evaluate determinants of matrices. So you can find areas of habitats, as in Example 2.

Key Vocabulary

Associated with each square $(n \times n)$ matrix is a real number called its **determinant**. The determinant of a matrix *A* is denoted by det *A* or by |A|.

• Cramer's rule

determinant

coefficient matrix

KEY CONCEPTFor Your NotebookThe Determinant of a MatrixDeterminant of a 2 × 2 Matrix $det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a & b \\ e & d \end{vmatrix} = ad - cb$ The determinant of a 2 × 2 matrix is the
difference of the products of the elements
on the diagonals.Determinant of a 3 × 3 MatrixSTEP 1Repeat the first two columns to the right of the determinant.STEP 2Subtract the sum of the red products from the sum of the
blue products.det $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{vmatrix} a & b & c & e \\ d & e & f & e \\ g & h & i & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h & g & h \\ g & h & h &$

EXAMPLE 1

Evaluate determinants

Evaluate the determinant of the matrix.

a.
$$\begin{bmatrix} 5 & 4 \\ 3 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} 2 & -1 & -3 \\ 4 & 1 & 0 \\ 3 & -4 & -2 \end{bmatrix}$

Solution

a.
$$\begin{vmatrix} 5 & 4 \\ 3 & 1 \end{vmatrix} = 5(1) - 3(4) = 5 - 12 = -7$$

b. $\begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} = (-4 + 0 + 48) - (-9 + 0 + 8) = 44 - (-1) = 45$