3.7 Evaluate Determinants and aia.a, 2a3a, Apply Cramer's Rule

You added, subtracted, and multiplied matrices.
You will evaluate determinants of matrices.
Why?
So you can find areas of habitats, as in Example 2.

Key Vocabulary

- determinant
- Cramer's rule
- coefficient matrix

Associated with each square ($n \times n$) matrix is a real number called its determinant. The determinant of a matrix A is denoted by $\operatorname{det} A$ or by $|A|$.

KEY CONCEPT For Your Motebook

The Determinant of a Matrix

Determinant of a $\mathbf{2 \times 2}$ Matrix
$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ e & d\end{array}\right|=a d-c b$
The determinant of a 2×2 matrix is the difference of the products of the elements on the diagonals.

Determinant of a 3×3 Matrix

STEP 1 Repeat the first two columns to the right of the determinant.
STEP 2 Subtract the sum of the red products from the sum of the blue products.

EXAMPLE 1 Evaluate determinants

Evaluate the determinant of the matrix.
a. $\left[\begin{array}{ll}5 & 4 \\ 3 & 1\end{array}\right]$
b. $\left[\begin{array}{rrr}2 & -1 & -3 \\ 4 & 1 & 0 \\ 3 & -4 & -2\end{array}\right]$

Solution

a. $\left|\begin{array}{ll}5 & 4 \\ 3 & 1\end{array}\right|=\underset{\uparrow}{5(1)-3(4)}=5-12=-7$

