40. SUMMER OLYMPICS The top three countries in the final medal standings for the 2004 Summer Olympics were the United States, China, and Russia. Each gold medal is worth 3 points, each silver medal is worth 2 points, and each bronze medal is worth 1 point. Organize the information using matrices. How many points did each country score?

Medals Won							
000		Gold	Silver	Bronze			
	USA	35	39	29			
*1	China	32	17	14			
	Russia	27	27	38			

41. TAKS REASONING Matrix *S* gives the numbers of three types of cars sold in February by two car dealers, dealer A and dealer B. Matrix *P* gives the profit for each type of car sold. Which matrix is defined, *SP* or *PS*? Find this matrix and explain what its elements represent.

	Matrix S			Matrix P		
	Α	В	Compact	Mid-size	Full-size	
Compact	21	16	Profit [\$650	\$825	\$1050]	
Mid-size	40	33				
Full-size	15	19_				

42. GRADING Your overall grade in math class is a weighted average of three components: homework, quizzes, and tests. Homework counts for 20% of your grade, quizzes count for 30%, and tests count for 50%. The spreadsheet below shows the grades on homework, quizzes, and tests for five students. Organize the information using a matrix, then multiply the matrix by a matrix of weights to find each student's overall grade.

	A	В	С	D
1	Name	Homework	Quizzes	Test
2	Jean	82	88	86
3	Ted	92	88	90
4	Pat	82	73	81
5	AI	74	75	78
6	Matt	88	92	90

- **43. MULTI-STEP PROBLEM** Residents of a certain suburb commute to a nearby city either by driving or by using public transportation. Each year, 20% of those who drive switch to public transportation, and 5% of those who use public transportation switch to driving.
 - a. The information above can be represented by the *transition matrix*

$$T = \begin{bmatrix} 1-p & q \\ p & 1-q \end{bmatrix}$$

where p is the percent of commuters who switch from driving to public transportation and q is the percent of commuters who switch from public transportation to driving. (Both p and q are expressed as decimals.) Write a transition matrix for the given situation.

b. Suppose 5000 commuters drive and 8000 commuters take public transportation. Let M_0 be the following matrix:

$$M_0 = \begin{bmatrix} 5000\\ 8000 \end{bmatrix}$$

Find $M_1 = TM_0$. What does this matrix represent?

c. Find $M_2 = TM_1$, $M_3 = TM_2$, and $M_4 = TM_3$. What do these matrices represent?