EXAMPLE 2 Find the product of two matrices

Find $A B$ if $A=\left[\begin{array}{rr}1 & 4 \\ 3 & -2\end{array}\right]$ and $B=\left[\begin{array}{rr}5 & -7 \\ 9 & 6\end{array}\right]$

Solution

Because A is a 2×2 matrix and B is a 2×2 matrix, the product $A B$ is defined and is a 2×2 matrix.

STEP 1 Multiply the numbers in the first row of A by the numbers in the first column of B, add the products, and put the result in the first row, first column of $A B$.

$$
\left[\begin{array}{rr}
1 & 4 \\
3 & -2
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
9 & 6
\end{array}\right]=[1(5)+4(9)
$$

STEP 2 Multiply the numbers in the first row of A by the numbers in the second column of B, add the products, and put the result in the first row, second column of $A B$.

$$
\left[\begin{array}{rr}
1 & 4 \\
3 & -2
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
9 & 6
\end{array}\right]=\left[\begin{array}{ll}
1(5)+4(9) & \mathbf{1}(-7)+4(6)
\end{array}\right]
$$

STEP 3 Multiply the numbers in the second row of A by the numbers in the first column of B, add the products, and put the result in the second row, first column of $A B$.

$$
\left[\begin{array}{rr}
1 & 4 \\
3 & -2
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
9 & 6
\end{array}\right]=\left[\begin{array}{rr}
1(5)+4(9) & 1(-7)+4(6) \\
3(5)+(-2)(9) &
\end{array}\right]
$$

STEP 4 Multiply the numbers in the second row of A by the numbers in the second column of B, add the products, and put the result in the second row, second column of $A B$.

$$
\left[\begin{array}{rr}
1 & 4 \\
3 & -2
\end{array}\right]\left[\begin{array}{rr}
5 & -7 \\
9 & 6
\end{array}\right]=\left[\begin{array}{rr}
1(5)+4(9) & 1(-7)+4(6) \\
3(5)+(-2)(9) & 3(-7)+(-2)(6)
\end{array}\right]
$$

STEP 5 Simplify the product matrix.

$$
\left[\begin{array}{rr}
1(5)+4(9) & 1(-7)+4(6) \\
3(5)+(-2)(9) & 3(-7)+(-2)(6)
\end{array}\right]=\left[\begin{array}{rr}
41 & 17 \\
-3 & -33
\end{array}\right]
$$

AnimatedAlgebra at classzone.com

For the matrices A and B in Example 2, notice that the product $B A$ is not the same as the product $A B$.

$$
B A=\left[\begin{array}{rr}
5 & -7 \\
9 & 6
\end{array}\right]\left[\begin{array}{rr}
1 & 4 \\
3 & -2
\end{array}\right]=\left[\begin{array}{rr}
-16 & 34 \\
27 & 24
\end{array}\right] \neq A B
$$

In general, matrix multiplication is not commutative.

