3.6 Multiply Matrices

TEKS a.1, a. 2

Before Now

 Why? You added and subtracted matrices. You will multiply matrices.

So you can calculate the cost of sports equipment, as in Example 4.

Key Vocabulary

- matrix, p. 187
- dimensions, p. 187
- elements, p. 187

The product of two matrices A and B is defined provided the number of columns in A is equal to the number of rows in B.

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then the product $A B$ is an $m \times p$ matrix.

dimensions of $A B$

EXAMPLE 1 Describe matrix products

State whether the product $A B$ is defined. If so, give the dimensions of $A B$.
a. $A: 4 \times 3, B: 3 \times 2$
b. $A: 3 \times 4, B: 3 \times 2$

Solution

a. Because A is a 4×3 matrix and B is a 3×2 matrix, the product $A B$ is defined and is a 4×2 matrix.
b. Because the number of columns in A (four) does not equal the number of rows in B (three), the product $A B$ is not defined.

Guided Practice for Example 1

State whether the product $A B$ is defined. If so, give the dimensions of $A B$.

1. $A: 5 \times 2, B: 2 \times 2$
2. $A: 3 \times 2, B: 3 \times 2$

KEY CONCEPT
 For Your Notebook

Multiplying Matrices

Words To find the element in the i th row and j th column of the product matrix $A B$, multiply each element in the i th row of A by the corresponding element in the j th column of B, then add the products.

$$
\left.\begin{array}{c}
\boldsymbol{A} \\
{\left[\begin{array}{ll}
\boldsymbol{a} & \boldsymbol{b} \\
c & d
\end{array}\right] \cdot\left[\begin{array}{cc}
\boldsymbol{e} & f \\
g & h
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{a e + b g} & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Algebra

