SCALAR MULTIPLICATION In matrix algebra, a real number is often called a **scalar**. To multiply a matrix by a scalar, you multiply each element in the matrix by the scalar. This process is called **scalar multiplication**.

EXAMPLE 2 Multiply a matrix by a scalar

COMPARE ORDER OF OPERATIONS

:

:

The order of operations for matrix expressions is similar to that for real numbers. In particular, you perform scalar multiplication before matrix addition and subtraction.

Perform the indicated operation, if possible.			
a. $-2\begin{bmatrix} 4 & -1 \\ 1 & 0 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} -2(4) & -2(-1) \\ -2(1) & -2(0) \\ -2(2) & -2(7) \end{bmatrix} = \begin{bmatrix} -8 & 2 \\ -2 & 0 \\ -4 & -14 \end{bmatrix}$			
b. $4\begin{bmatrix} -2 & -8\\ 5 & 0 \end{bmatrix} + \begin{bmatrix} -3 & 8\\ 6 & -5 \end{bmatrix} = \begin{bmatrix} 4(-2) & 4(-8)\\ 4(5) & 4(0) \end{bmatrix} + \begin{bmatrix} -3 & 8\\ 6 & -5 \end{bmatrix}$;		
$= \begin{bmatrix} -8 & -32\\ 20 & 0 \end{bmatrix} + \begin{bmatrix} -3 & 8\\ 6 & -5 \end{bmatrix}$			
$= \begin{bmatrix} -8 + (-3) & -32 + 8\\ 20 + 6 & 0 + (-5) \end{bmatrix}$			
$= \begin{bmatrix} -11 & -24\\ 26 & -5 \end{bmatrix}$			

GUIDED PRACTICE for Examples 1 and 2

Perform the indicated operation, if possible.

$$\mathbf{1.} \begin{bmatrix} -2 & 5 & 11 \\ 4 & -6 & 8 \end{bmatrix} + \begin{bmatrix} -3 & 1 & -5 \\ -2 & -8 & 4 \end{bmatrix} \qquad \mathbf{2.} \begin{bmatrix} -4 & 0 \\ 7 & -2 \\ -3 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 2 \\ -3 & 0 \\ 5 & -14 \end{bmatrix} \\ \mathbf{3.} -4 \begin{bmatrix} 2 & -1 & -3 \\ -7 & 6 & 1 \\ -2 & 0 & -5 \end{bmatrix} \qquad \mathbf{4.} 3 \begin{bmatrix} 4 & -1 \\ -3 & -5 \end{bmatrix} + \begin{bmatrix} -2 & -2 \\ 0 & 6 \end{bmatrix}$$

MATRIX PROPERTIES Many of the properties you have used with real numbers can be applied to matrices as well.

	CONCEPT SUMMARY	For Your Notebook	
2222	Properties of Matrix Operations		
9999	Let A, B, and C be matrices with the same dimensions, and let k be a scalar.		
200	Associative Property of Addition	(A + B) + C = A + (B + C)	
0000	Commutative Property of Addition	A + B = B + A	
200	Distributive Property of Addition	k(A + B) = kA + kB	
66666	Distributive Property of Subtraction	k(A - B) = kA - kB	