ELIMINATION METHOD The elimination method you studied in Lesson 3.2 can be extended to solve a system of linear equations in three variables.

KEY CONCEPT
 For Your Notebook

The Elimination Method for a Three-Variable System

STEP 1 Rewrite the linear system in three variables as a linear system in two variables by using the elimination method.

STEP 2 Solve the new linear system for both of its variables.
STEP 3 Substitute the values found in Step 2 into one of the original equations and solve for the remaining variable.

If you obtain a false equation, such as $0=1$, in any of the steps, then the system has no solution.
If you do not obtain a false equation, but obtain an identity such as $0=0$, then the system has infinitely many solutions.

EXAMPLE 1 Use the elimination method

Solve the system. $\quad 4 x+2 y+3 z=1 \quad$ Equation 1

$$
2 x-3 y+5 z=-14 \quad \text { Equation } 2
$$

$$
6 x-y+4 z=-1 \quad \text { Equation } 3
$$

Solution

ANOTHER WAY In Step 1, you could also eliminate x to get two equations in y and z, or you could eliminate z to get two equations in x and y.

STEP 1 Rewrite the system as a linear system in two variables.

$4 x+2 y+3 z$	$=1$		Add 2 times Equation 3
$12 x-2 y+8 z$	$=-2$		
$16 x+11 z$	$=-1$		(o Equation 1.
$2 x-3 y+5 z$	$=-14$		Add -3 times Equation 3
$\frac{-18 x+3 y-12 z}{}=3$		to Equation 2.	
$-16 x-7 z$	$=-11$		New Equation 2

STEP 2 Solve the new linear system for both of its variables.

$$
\begin{array}{rlrl}
16 x+11 z & =-1 & & \text { Add new Equation } \mathbf{1} \\
-16 x-7 z & =-11 \\
\hline 4 z & =-12 \\
z & =-3 & & \text { and new Equation } \mathbf{2} . \\
x & =2 & & \text { Solve for } \mathbf{z} . \\
& & \text { Substitute into new Equation } \mathbf{1} \text { or } \mathbf{2} \text { to find } \boldsymbol{x} .
\end{array}
$$

STEP 3 Substitute $x=2$ and $z=-3$ into an original equation and solve for y.

$$
\begin{aligned}
6 x-y+4 z & =-1 & & \text { Write original Equation } 3 . \\
6(2)-y+4(-3) & =-1 & & \text { Substitute } \mathbf{2} \text { for } \boldsymbol{x} \text { and }-\mathbf{3} \text { for } \mathbf{z} . \\
y & =1 & & \text { Solve for } \mathbf{y} .
\end{aligned}
$$

- The solution is $x=2, y=1$, and $z=-3$, or the ordered triple $(2,1,-3)$.

Check this solution in each of the original equations.

