

3.4 Graphing Linear Equations in Thes a., a, as Three Variables

MATERIALS • graph paper • ruler

QUESTION What is the graph of a linear equation in three variables?

A linear equation in three variables has the form $a x+b y+c z=d$. You can graph this type of equation in a three-dimensional coordinate system formed by three axes that divide space into eight octants. Each point in space is represented by an ordered triple (x, y, z).

The graph of any equation in three variables is the set of all points (x, y, z) whose coordinates make the equation true. For a linear equation in three variables, the graph is a plane.

EXPLORE Graph $3 x+4 y+6 z=12$

STEP 1 Find x-intercept

Find the x-intercept by setting y and z equal to 0 and solving the resulting equation, $3 x=12$. The x-intercept is 4 , so plot $(4,0,0)$.

STEP 2 Find y-intercept

Find the y-intercept by setting x and z equal to 0 and solving the resulting equation, $4 y=12$. The y-intercept is 3 , so plot $(0,3,0)$.

STEP 3 Find z-intercept

Find the z-intercept by setting x and y equal to 0 and solving the resulting equation, $6 z=12$. The z-intercept is 2 , so plot $(0,0,2)$. Then connect the points.

The triangular region shown in Step 3 is the portion of the graph of $3 x+4 y+6 z=12$ that lies in the first octant.

Draw Conclusions Use your observations to complete these exercises

Sketch the graph of the equation.

1. $4 x+3 y+2 z=12$
2. $2 x+2 y+3 z=6$
3. $x+5 y+3 z=15$
4. $5 x-y-2 z=10$
5. $-7 x+7 y+2 z=14$
6. $2 x+9 y-3 z=-18$
7. Suppose three linear equations in three variables are graphed in the same coordinate system. In how many different ways can the planes intersect? Explain your reasoning.
