EXAMPLE 1 Use linear programming to maximize profit

BUSINESS How many bowls and how many plates should the potter described on page 174 make in order to maximize profit?

Solution

STEP 1 Graph the system of constraints:

$x \geq 4$	Make at least 4 bowls.
$y \geq 0$	Number of plates cannot be negative.
$5 x+4 y \leq 40$	Can use up to 40 pounds of clay.

STEP 2 Evaluate the profit function $P=35 x+30 y$ at each vertex of the feasible region.

At $(4,0): P=35(4)+30(0)=140$
At $(8,0): P=35(8)+30(0)=280$
At $(4,5): P=35(4)+30(5)=290 \longleftarrow$ Maximum

- The potter can maximize profit by making 4 bowls and 5 plates.

EXAMPLE 2 Solve a linear programming problem

Find the minimum value and the maximum value of the objective function $C=4 x+5 y$ subject to the following constraints.
$x \geq 0$
$y \geq 0$
$x+2 y \leq 16$
$5 x+y \leq 35$

Solution

STEP 1 Graph the system of constraints. Find the coordinates of the vertices of the feasible region by solving systems of two linear equations. For example, the solution of the system

$$
\begin{aligned}
& x+2 y=16 \\
& 5 x+y=35
\end{aligned}
$$

gives the vertex $(6,5)$. The other three vertices are $(0,0),(7,0)$, and $(0,8)$.

STEP 2 Evaluate the function $C=4 x+5 y$ at each of the vertices.
At $(0,0): C=4(0)+5(0)=0 \longleftarrow$ Minimum
At $(7,0): C=4(7)+5(0)=28$
At $(6,5): C=4(6)+5(5)=49 \longleftarrow$ Maximum
At $(0,8): C=4(0)+5(8)=40$

The minimum value of C is 0 . It occurs when $x=0$ and $y=0$.
The maximum value of C is 49 . It occurs when $x=6$ and $y=5$.

