## **EXAMPLE 1** Use linear programming to maximize profit

**BUSINESS** How many bowls and how many plates should the potter described on page 174 make in order to maximize profit?

## Solution

| STEP 1 | Graph the system of constraints:                   |                                      |
|--------|----------------------------------------------------|--------------------------------------|
|        | $x \ge 4$                                          | Make at least 4 bowls.               |
|        | $y \ge 0$                                          | Number of plates cannot be negative. |
|        | $5x + 4y \le 40$                                   | Can use up to 40 pounds of clay.     |
| STEP 2 | <b>Evaluate</b> the profit function $P = 35x + 30$ |                                      |



- **STEP 2** Evaluate the profit function P = 35x + 30y at each vertex of the feasible region.
  - At (4, 0): P = 35(4) + 30(0) = 140At (8, 0): P = 35(8) + 30(0) = 280At (4, 5): P = 35(4) + 30(5) = 290  $\checkmark$  Maximum
- The potter can maximize profit by making 4 bowls and 5 plates.

## **EXAMPLE 2** Solve a linear programming problem

Find the minimum value and the maximum value of the objective function C = 4x + 5y subject to the following constraints.

 $x \ge 0$   $y \ge 0$   $x + 2y \le 16$  $5x + y \le 35$ 

## Solution

**STEP 1** Graph the system of constraints. Find the coordinates of the vertices of the feasible region by solving systems of two linear equations. For example, the solution of the system

$$x + 2y = 16$$
  
$$5x + y = 35$$

gives the vertex (6, 5). The other three vertices are (0, 0), (7, 0), and (0, 8).



**STEP 2** Evaluate the function C = 4x + 5y at each of the vertices.

The minimum value of *C* is 0. It occurs when x = 0 and y = 0. The maximum value of *C* is 49. It occurs when x = 6 and y = 5.