40. TAKS REASONING What is the solution of the linear system?

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 6 x-3 y=-27
\end{aligned}
$$

(A) $(-2,-5)$
(B) $(-2,5)$
(C) $(2,-5)$
(D) $(2,5)$

GEOMETRY Find the coordinates of the point where the diagonals of the quadrilateral intersect.
41.

42.

43.

SOLVING LINEAR SYSTEMS Solve the system using any algebraic method.
44. $0.02 x-0.05 y=-0.38$
$0.03 x+0.04 y=1.04$
45. $0.05 x-0.03 y=0.21$
$0.07 x+0.02 y=0.16$
46. $\frac{2}{3} x+3 y=-34$
$x-\frac{1}{2} y=-1$
47. $\frac{1}{2} x+\frac{2}{3} y=\frac{5}{6}$
$\frac{5}{12} x+\frac{7}{12} y=\frac{3}{4}$
48. $\frac{x+3}{4}+\frac{y-1}{3}=1$
$2 x-y=12$
49. $\frac{x-1}{2}+\frac{y+2}{3}=4$
$x-2 y=5$
50. TAKS REASONING Write a system of linear equations that has $(-1,4)$ as its only solution. Verify that $(-1,4)$ is a solution using either the substitution method or the elimination method.

SOLVING NONLINEAR SYSTEMS Use the elimination method to solve the system.
51. $7 y+18 x y=30$
$13 y-18 x y=90$
52. $x y-x=14$
$5-x y=2 x$
53. $2 x y+y=44$ $32-x y=3 y$
54. Challenge Find values of r, s, and t that produce the indicated solution(s).

$$
\begin{array}{r}
-3 x-5 y=9 \\
r x+s y=t
\end{array}
$$

a. No solution
b. Infinitely many solutions
c. A solution of $(2,-3)$

PROBLEM SOLVING

for Exs. 55-59
55. GUITAR SALES In one week, a music store sold 9 guitars for a total of \$3611. Electric guitars sold for $\$ 479$ each and acoustic guitars sold for $\$ 339$ each. How many of each type of guitar were sold?
TEXAS @HomeTutor for problem solving help at classzone.com
56. COUNTY FAIR An adult pass for a county fair costs $\$ 2$ more than a children's pass. When 378 adult and 214 children's passes were sold, the total revenue was $\$ 2384$. Find the cost of an adult pass.
TEXAS@HomeTutor for problem solving help at classzone.com

