4. WHAT IF? In Example 3, suppose the school spends a total of $\$ 3715$ on T-shirts and sells all of them for $\$ 6160$. How many of each type of T-shirt are sold?

CHOOSING A METHOD In general, the substitution method is convenient when one of the variables in a system of equations has a coefficient of 1 or -1 , as in Example 1. If neither variable in a system has a coefficient of 1 or -1 , it is usually easier to use the elimination method, as in Examples 2 and 3.

EXAMPLE 4 Solve linear systems with many or no solutions

Solve the linear system.
a. $x-2 y=4$
$3 x-6 y=8$
b. $4 x-10 y=8$
$-14 x+35 y=-28$

Solution

a. Because the coefficient of x in the first equation is 1 , use the substitution method.

Solve the first equation for x.

$$
\begin{aligned}
x-2 y & =4 & & \text { Write first equation. } \\
x & =2 y+4 & & \text { Solve for } x .
\end{aligned}
$$

Substitute the expression for x into the second equation.

$$
\begin{aligned}
3 x-6 y=8 & \text { Write second equation. } \\
3(2 y+4)-6 y=8 & \text { Substitute } 2 y+4 \text { for } x . \\
12=8 & \text { Simplify. }
\end{aligned}
$$

- Because the statement $12=8$ is never true, there is no solution.
b. Because no coefficient is 1 or -1 , use the elimination method.

Multiply the first equation by $\mathbf{7}$ and the second equation by 2.

$$
\begin{array}{rrr}
4 x-10 y=8 & \times \mathbf{7} \\
-14 x+35 y=-28 & \times \mathbf{2}
\end{array} \quad \begin{gathered}
28 x-70 y=56 \\
\text { Add the revised equations. }
\end{gathered}
$$

- Because the equation $0=0$ is always true, there are infinitely many solutions.

GUIDED PRACTICE for Example 4

Solve the linear system using any algebraic method.
5. $12 x-3 y=-9$
$-4 x+y=3$
6. $6 x+15 y=-12$ $-2 x-5 y=9$
7. $5 x+3 y=20$
$-x-\frac{3}{5} y=-4$
8. $12 x-2 y=21$
$3 x+12 y=-4$
9. $8 x+9 y=15$
$5 x-2 y=17$
10. $5 x+5 y=5$
$5 x+3 y=4.2$

