4. WHAT IF? In Example 3, suppose the school spends a total of \$3715 on T-shirts and sells all of them for \$6160. How many of each type of T-shirt are sold?

CHOOSING A METHOD In general, the substitution method is convenient when one of the variables in a system of equations has a coefficient of 1 or -1, as in Example 1. If neither variable in a system has a coefficient of 1 or -1, it is usually easier to use the elimination method, as in Examples 2 and 3.

EXAMPLE 4 Solve linear systems with many or no solutions

Solve the linear system.

a. x - 2y = 43x - 6y = 8

b. 4x - 10y = 8-14x + 35y = -28

Solution

a. Because the coefficient of *x* in the first equation is 1, use the substitution method.

Solve the first equation for *x*.

x - 2y = 4	Write first equation.
x = 2y + 4	Solve for <i>x</i> .

Substitute the expression for *x* into the second equation.

3x - 6y = 8	Write second equation.
3(2y+4) - 6y = 8	Substitute 2y + 4 for x.
12 = 8	Simplify.

Because the statement 12 = 8 is never true, there is *no solution*.

b. Because no coefficient is 1 or -1, use the elimination method.

Multiply the first equation by 7 and the second equation by 2.

4x - 10y = 8	× 7	28x - 70y = 56
-14x + 35y = -28	× 2	-28x + 70y = -56
d the revised equations.		0 = 0

Add the revised equations.

Because the equation 0 = 0 is always true, there are *infinitely many* solutions.

GUIDED PRACTICE for Example 4

Solve the linear system using any algebraic method.

5. $12x - 3y = -9$	6. $6x + 15y = -12$	7. $5x + 3y = 20$
-4x + y = 3	-2x - 5y = 9	$-x - \frac{3}{5}y = -4$
8. $12x - 2y = 21$ 3x + 12y = -4	9. $8x + 9y = 15$ 5x - 2y = 17	10. $5x + 5y = 5$ 5x + 3y = 4.2

When multiplying an equation by a constant, make sure you multiply each term of the equation by the

AVOID ERRORS

constant.