Example 3 TAKS PRACTICE: Multiple Choice

To raise money for new football uniforms, your school sells silk-screened T-shirts. Short sleeve T-shirts cost the school \$8 each and are sold for \$11 each. Long sleeve T-shirts cost the school \$10 each and are sold for \$16 each. The school spends a total of $\$ 3900$ on T-shirts and sells all of them for $\$ 5925$. How many of the short sleeve T-shirts are sold?
(A) 75
(B) 150
(C) 175
(D) 250

Solution

STEP 1 Write verbal models for this situation.
Equation 1

Short sleeve cost (dollars/shirt)		Short sleeve shirts (shirts)	+	Long sleeve cost (dollars/shirt)	-	Long sleeve shirts (shirts)	$=$	Total cost (dollars)
-				,		-		
8		\boldsymbol{x}	+	10	-	y	$=$	3900

Equation 2

STEP 2 Write a system of equations.

$$
\begin{array}{lll}
\text { Equation } 1 & 8 x+10 y=3900 & \text { Total cost for all T-shirts } \\
\text { Equation } 2 & 11 x+16 y=5925 & \text { Total revenue from T-shirts sold }
\end{array}
$$

STEP 3 Solve the system using the elimination method.
Multiply Equation 1 by $\mathbf{- 1 1}$ and Equation 2 by $\mathbf{8}$ so that the coefficients of x differ only in sign.

$$
\begin{array}{rlrl}
8 x+10 y=3900 & \times-11 & -88 x-110 y & =-42,900 \\
11 x+16 y=5925 & \times 8 & 88 x+128 y & =47,400 \\
\text { Add the revised equations and solve for } y . & 18 y & =4500 \\
y & =250
\end{array}
$$

Substitute the value of y into one of the original equations and solve for x.

$$
\begin{aligned}
8 x+10 y & =3900 & & \text { Write Equation } \mathbf{1} . \\
8 x+10(250) & =3900 & & \text { Substitute } 250 \text { for } y . \\
8 x+2500 & =3900 & & \text { Simplify. } \\
x & =175 & & \text { Solve for } x .
\end{aligned}
$$

The school sold 175 short sleeve T-shirts and 250 long sleeve T-shirts.

- The correct answer is C. (A) (B) (C)

