ELIMINATION METHOD Another algebraic method that you can use to solve a system of equations is the **elimination method**. The goal of this method is to eliminate one of the variables by adding equations.

111	KEY CONCEPT		For Your Notebook	
The Elimination Method				
666666	STEP 1	Multiply one or both of the equations coefficients that differ only in sign fo	by a constant to obtain r one of the variables.	
222222	STEP 2	Add the revised equations from Step eliminate one of the variables. Solve	1. Combining like terms will for the remaining variable.	
22222222	STEP 3	Substitute the value obtained in Step equations and solve for the other var	2 into either of the original iable.	

EXAMPLE 2 Use the elimination method

STEP 2 Add the revised equations and solve for y.

Solve the	e system using the elim	ination method.	od. $3x - 7y = 10$ 6x - 8y = 8	Equation 1 Equation 2	
Solution	I		on of o	-4	
STEP 1	EP1 Multiply Equation 1 by -2 so that the coefficients of x differ only in sign				
	3x - 7y = 10	× -2	-6x + 14y = -	-20	
	6x - 8y = 8		6x - 8y = 8	}	

SOLVE SYSTEMS

In Example 2, one coefficient of *x* is a multiple of the other. In this case, it is easier to eliminate the *x*-terms because you need to multiply only one equation by a constant.

STEP 3 Substitute the value of *y* into one of the original equations. Solve for *x*.

3x - 7y = 10 Write Equation 1. 3x - 7(-2) = 10 Substitute -2 for y. 3x + 14 = 10 Simplify. $x = -\frac{4}{3}$ Solve for x.

The solution is $\left(-\frac{4}{3}, -2\right)$.

CHECK You can check the solution algebraically using the method shown in Example 1. You can also use a graphing calculator to check the solution.

6y = -12

v = -2

Animated Algebra at classzone.com

for Examples 1 and 2

Solve the system using the substitution or the elimination method.

1. 4x + 3y = -2
x + 5y = -92. 3x + 3y = -15
5x - 9y = 33. 3x - 6y = 9
-4x + 7y = -16