ELIMINATION METHOD Another algebraic method that you can use to solve a system of equations is the elimination method. The goal of this method is to eliminate one of the variables by adding equations.

## KEY CONCEPT <br> For Your Notebook

The Elimination Method
STEP 1 Multiply one or both of the equations by a constant to obtain coefficients that differ only in sign for one of the variables.

STEP 2 Add the revised equations from Step 1. Combining like terms will eliminate one of the variables. Solve for the remaining variable.

STEP 3 Substitute the value obtained in Step 2 into either of the original equations and solve for the other variable.

## EXAMPLE 2 Use the elimination method

Solve the system using the elimination method.

$$
\begin{array}{ll}
3 x-7 y=10 & \text { Equation 1 } \\
6 x-8 y=8 & \text { Equation 2 }
\end{array}
$$

## Solution

STEP 1 Multiply Equation 1 by $\mathbf{- 2}$ so that the coefficients of $x$ differ only in sign.

$$
\begin{array}{rlrl}
3 x-7 y & =10 & x-2 \\
6 x-8 y & =8
\end{array} \quad \begin{aligned}
-6 x+14 y & =-20 \\
6 x-8 y & =8 \\
\text { STEP } 2 & \text { Add the revised equations and solve for } y .
\end{aligned} \begin{aligned}
6 y & =-12 \\
y & =-2
\end{aligned}
$$

STEP 3 Substitute the value of $y$ into one of the original equations. Solve for $x$.

$$
\begin{aligned}
3 x-7 y & =10 & & \text { Write Equation } \mathbf{1 .} \\
3 x-7(-2) & =10 & & \text { Substitute }-2 \text { for } y . \\
3 x+14 & =10 & & \text { Simplify. } \\
x & =-\frac{4}{3} & & \text { Solve for } x .
\end{aligned}
$$

- The solution is $\left(-\frac{4}{3},-2\right)$.

CHECK You can check the solution algebraically using the method shown in Example 1. You can also use a graphing calculator to check the solution.

AnimatedAlgebra at classzone.com


GUIDED Practice for Examples 1 and 2
Solve the system using the substitution or the elimination method.

1. $\begin{gathered}4 x+3 y=-2 \\ x+5 y=-9\end{gathered}$
2. $3 x+3 y=-15$
3. $3 x-6 y=9$
$-4 x+7 y=-16$
