CLASSIFYING SYSTEMS A system that has at least one solution is consistent. If a system has no solution, the system is inconsistent. A consistent system that has exactly one solution is independent, and a consistent system that has infinitely many solutions is dependent. The system in Example 1 is consistent and independent.

KEY CONCEPT

For Your Notebook

Number of Solutions of a Linear System

The relationship between the graph of a linear system and the system's number of solutions is described below.

Exactly one solution

Lines intersect at one point; consistent and independent

Infinitely many solutions

Lines coincide; consistent and dependent

No solution

Lines are parallel; inconsistent

EXAMPLE 2 Solve a system with many solutions

CHECK SOLUTION

To check your solution in Example 2, observe that both equations have the same slopeintercept form:

$$
y=\frac{4}{3} x-\frac{8}{3}
$$

So the graphs are the same line.

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$
\begin{array}{ll}
4 x-3 y=8 & \text { Equation 1 } \\
8 x-6 y=16 & \text { Equation 2 }
\end{array}
$$

Solution

The graphs of the equations are the same line. So, each point on the line is a solution, and the system has infinitely many solutions. Therefore, the system is consistent and dependent.

EXAMPLE 3 Solve a system with no solution

CHECK SOLUTION

To verify that the graphs in Example 3 are parallel lines, write the equations in slope-intercept form and observe that the lines have the same slope, -2, but different y-intercepts, 4 and 1.

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$
\begin{array}{ll}
2 x+y=4 & \text { Equation 1 } \\
2 x+y=1 & \text { Equation 2 }
\end{array}
$$

Solution

The graphs of the equations are two parallel lines. Because the two lines have no point of intersection, the system has no solution. Therefore, the system is inconsistent.

